Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(8): 5626-5635, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29411805

ABSTRACT

For the first time, the molecular mobility of two linear-shaped tetramethylated guanidinium triflate ionic liquid crystals (ILCs) having different lengths of alkyl chains was investigated using a combination of broadband dielectric spectroscopy (BDS) and specific heat spectroscopy (SHS). By self-assembly, these ILCs can form a hexagonal ordered mesophase besides plastic crystalline phases and the isotropic state. Three dielectric active processes were found using BDS for both samples. At low temperatures, a γ-process in the plastic crystalline state is observed which is assigned to localized fluctuations of methyl groups including nitrogen atoms in the guanidinium head. At higher temperatures but still in the plastic crystalline state, an α1-process takes place. An α2-process was detected using SHS but with a completely different temperature dependence of the relaxation times than that of the α1-relaxation. This result is discussed in detail, and different molecular assignments of the processes are suggested. At even higher temperatures, electrical conductivity is detected and an increase in the DC conductivity by four orders of magnitude at the phase transition from the plastic crystalline to the hexagonal columnar mesophase is found. This result is traced to a change in the charge transport mechanism from a delocalized electron hopping in the stacked aromatic systems (in the plastic phase) to one dominated by an ionic conduction in the quasi-1D ion channels formed along the supermolecular columns in the ILC hexagonal mesophases.

2.
Beilstein J Org Chem ; 9: 1093-101, 2013.
Article in English | MEDLINE | ID: mdl-23766823

ABSTRACT

The recently introduced concept of ionic liquid crystals (ILCs) with complementary ion pairs, consisting of both, mesogenic cation and anion, was extended from guanidinium sulfonates to guanidinium sulfonimides. In this preliminary study, the synthesis and mesomorphic properties of selected derivatives were described, which provide the first example of an ILC with the sulfonimide anion directly attached to the mesogenic unit.

3.
Langmuir ; 28(22): 8399-407, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22616616

ABSTRACT

New triphenylene-based silanes 2-(ω-(chlorodimethylsilyl)-n-alkyl)-3,6,7,10,11-penta-m-alkoxytriphenylene 4 (Tm-Cn) with n = 8 or 9 and m = 7, 8, 9, 10, or 11 were synthesized, and their self-assembly behavior in the liquid state and at glass and silicon oxide surfaces was investigated. The mesomorphic properties of triphenylene silanes 4 (Tm-Cn) and their precursors 3 (Tm-Cn) were determined by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction. From the small-angle X-ray scattering (SAXS) regime, a preferential discotic lamellar mesophase can be deduced, and wide-angle X-ray scattering (WAXS) highlights the liquid-like characteristics of the alkyl side chains. To transfer these bulk structural properties to thin films, self-assembled monolayers (SAMs) were obtained by adsorption from solution and characterized by water contact angle measurements, null ellipsometry, and atomic force microscopy (AFM). Employing the concentration as an additional degree of freedom, binary SAMs of 2-(ω-(chlorodimethylsilyl)-undecyl)-3,6,7,10,11-penta-decyloxytriphenylene 4 (T10-C11) were coassembled with chlorodecyldimethylsilane or chlorodimethyloctadecylsilane, and their capability as model systems for organic templating was evaluated. The structure of the resulting binary mixed SAMs was analyzed by water contact angle measurements, null ellipsometry, and X-ray reflectivity (XRR) in combination with theoretical modeling by a multidimensional Parratt algorithm and AFM. The composition dependence of film thickness and roughness can be explained by a microscopic model including the steric hindrance of the respective molecular constituents.

4.
Chemistry ; 18(10): 3014-22, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22298322

ABSTRACT

Ionic liquid crystals are mesogenic compounds that consist of cations and anions, usually rod-like cations and spherical anions. Herein we report a new method for the synthesis of ionic liquid crystals by using cations and anions of the same molecular shape with oppositely charged head groups. Thus, 4-alkoxyphenylpentamethylguanidinium 4-alkoxyphenylsulfonate ion pairs have been synthesised. 4-Alkoxyphenylpentamethylguanidinium iodides were also prepared to determine the influence of congruently shaped anions, in comparison with their spherical counterparts, on mesophase behaviour, which was investigated by differential scanning calorimetry (DSC), polarising optical microscopy (POM) and X-ray diffraction (XRD). All the liquid crystalline salts exhibit smectic A mesophases with strongly interdigitated bilayer structures. The guanidinium sulfonate ion pairs show mesomorphic properties from shorter alkyl chain lengths (≥C(9)) and lower melting points (≈10 K), whereas the corresponding guanidinium iodides are liquid crystalline for longer alkyl chain lengths (≥C(14)). For chains with ≥C(18), however, the mesophase range decreases for the sulfonate ion pairs, but not for the iodide salts.

5.
Chemphyschem ; 11(17): 3752-65, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21086484

ABSTRACT

A series of N-4-(4'-alkoxybiphenyl)-N',N',N",N"-tetramethylguanidinium salts was synthesized with varying alkoxy chain lengths and additional N-alkyl substituents, each with a number of different counterions. X-ray crystal-structure analyses of 1b I, 1b PF(6), 2a I, and 4a I reveal bilayer structures in the solid state and, for the 1b and 1b PF(6) salts, a hydrogen-bond-type connectivity between the guanidinium N-H group and the anion is found. For the N-alkyl homologues 2a I and 4a I the anion is still oriented close to the head group, although at a larger distance. Ion pairs are present also in solution, as demonstrated by (1)H NMR: the N-H chemical shift shows a good linear correlation with the radius, and hence the hardness, of the anion. The intramolecular conformational flexibility of 1b I, 2b I, 3b I, and 4b I was studied by temperature-dependent (1)H NMR spectroscopy and discrete activation barriers were determined for rotations about each of the three C-N partial double bonds of the guanidinium core. The relative heights of the individual barriers change between the N-H and the N-alkylguanidinium salts. A fourth barrier is observed for the rotation about the N-biphenyl bond. DFT calculations of charge densities show that the positive charge resides primarily on the central carbon atom. Rotational barriers were calculated for N'-substituted 2-amino-1,3-dimethylimidazolidinium cations as models, and are in qualitatively good agreement with the NMR data. Mesomorphic properties were studied by differential-scanning calorimetry, polarizing optical microscopy, and X-ray diffraction (WAXS/SAXS). All liquid-crystalline guanidinium salts exhibit smectic A mesophases. Clearing temperatures show a linear correlation with the anionic radius. Substitution of the N-H group with methyl, ethyl, or propyl results in decreasing mesophase widths and a concomitant shrinkage of the layer spacings.

SELECTION OF CITATIONS
SEARCH DETAIL
...