Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34117709

ABSTRACT

Atherosclerosis, in the ultimate stage of cardiovascular diseases, causes an obstruction of vessels leading to ischemia and finally to necrosis. To restore vascularization and tissue regeneration, stimulation of angiogenesis is necessary. Chemokines and microRNAs (miR) were studied as pro-angiogenic agents. We analysed the miR-126/CXCL12 axis and compared impacts of both miR-126-3p and miR-126-5p strands effects in CXCL12-induced angiogenesis. Indeed, the two strands of miR-126 were previously shown to be active but were never compared together in the same experimental conditions regarding their differential functions in angiogenesis. In this study, we analysed the 2D-angiogenesis and the migration assays in HUVEC in vitro and in rat's aortic rings ex vivo, both transfected with premiR-126-3p/-5p or antimiR-126-3p/-5p strands and stimulated with CXCL12. First, we showed that CXCL12 had pro-angiogenic effects in vitro and ex vivo associated with overexpression of miR-126-3p in HUVEC and rat's aortas. Second, we showed that 2D-angiogenesis and migration induced by CXCL12 was abolished in vitro and ex vivo after miR-126-3p inhibition. Finally, we observed that SPRED-1 (one of miR-126-3p targets) was inhibited after CXCL12 treatment in HUVEC leading to improvement of CXCL12 pro-angiogenic potential in vitro. Our results proved for the first time: 1-the role of CXCL12 in modulation of miR-126 expression; 2-the involvement of miR-126 in CXCL12 pro-angiogenic effects; 3-the involvement of SPRED-1 in angiogenesis induced by miR-126/CXCL12 axis.

2.
PLoS One ; 9(8): e104712, 2014.
Article in English | MEDLINE | ID: mdl-25116206

ABSTRACT

Platelets are not only central actors of hemostasis and thrombosis but also of other processes including inflammation, angiogenesis, and tissue regeneration. Accumulating evidence indicates that these "non classical" functions of platelets do not necessarily rely on their well-known ability to form thrombi upon activation. This suggests the existence of non-thrombotic alternative states of platelets activation. We investigated this possibility through dose-response analysis of thrombin- and collagen-induced changes in platelet phenotype, with regards to morphological and functional markers of platelet activation including shape change, aggregation, P-selectin and phosphatidylserine surface expression, integrin activation, and release of soluble factors. We show that collagen at low dose (0.25 µg/mL) selectively triggers a platelet secretory phenotype characterized by the release of dense- and alpha granule-derived soluble factors without causing any of the other major platelet changes that usually accompany thrombus formation. Using a blocking antibody to glycoprotein VI (GPVI), we further show that this response is mediated by GPVI. Taken together, our results show that platelet activation goes beyond the mechanisms leading to platelet aggregation and also includes alternative platelet phenotypes that might contribute to their thrombus-independent functions.


Subject(s)
Blood Platelets/metabolism , Collagen/metabolism , Platelet Activation/physiology , Platelet Membrane Glycoproteins/immunology , Thrombin/metabolism , Antibodies/immunology , Blood Coagulation/physiology , Calcium Signaling , Humans , Integrins/metabolism , P-Selectin/biosynthesis , Phosphatidylserines/biosynthesis , Platelet Adhesiveness/physiology , Platelet Aggregation/physiology , Platelet Membrane Glycoproteins/antagonists & inhibitors , Platelet Membrane Glycoproteins/metabolism , Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...