Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 35(3): 335-346, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38082490

ABSTRACT

SIGNIFICANCE STATEMENT: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. More than 1500 patients were collated in an international longitudinal study to revise the ANCA kidney risk score. The score showed satisfactory performance, mimicking the original study (Harrell's C=0.779). In the development cohort of 959 patients, no additional parameters aiding the tool were detected, but replacing the GFR with creatinine identified an additional cutoff. The parameter interstitial fibrosis and tubular atrophy was modified to allow wider access, risk points were reweighted, and a fourth risk group was created, improving predictive ability (C=0.831). In the validation, the new model performed similarly well with excellent calibration and discrimination ( n =480, C=0.821). The revised score optimizes prognostication for clinical practice and trials. BACKGROUND: Reliable prediction tools are needed to personalize treatment in ANCA-associated GN. A retrospective international longitudinal cohort was collated to revise the ANCA renal risk score. METHODS: The primary end point was ESKD with patients censored at last follow-up. Cox proportional hazards were used to reweight risk factors. Kaplan-Meier curves, Harrell's C statistic, receiver operating characteristics, and calibration plots were used to assess model performance. RESULTS: Of 1591 patients, 1439 were included in the final analyses, 2:1 randomly allocated per center to development and validation cohorts (52% male, median age 64 years). In the development cohort ( n =959), the ANCA renal risk score was validated and calibrated, and parameters were reinvestigated modifying interstitial fibrosis and tubular atrophy allowing semiquantitative reporting. An additional cutoff for kidney function (K) was identified, and serum creatinine replaced GFR (K0: <250 µ mol/L=0, K1: 250-450 µ mol/L=4, K2: >450 µ mol/L=11 points). The risk points for the percentage of normal glomeruli (N) and interstitial fibrosis and tubular atrophy (T) were reweighted (N0: >25%=0, N1: 10%-25%=4, N2: <10%=7, T0: none/mild or <25%=0, T1: ≥ mild-moderate or ≥25%=3 points), and four risk groups created: low (0-4 points), moderate (5-11), high (12-18), and very high (21). Discrimination was C=0.831, and the 3-year kidney survival was 96%, 79%, 54%, and 19%, respectively. The revised score performed similarly well in the validation cohort with excellent calibration and discrimination ( n =480, C=0.821). CONCLUSIONS: The updated score optimizes clinicopathologic prognostication for clinical practice and trials.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Humans , Male , Middle Aged , Female , Longitudinal Studies , Retrospective Studies , Kidney , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/diagnosis , Creatinine , Risk Factors , Fibrosis , Atrophy
2.
PLoS One ; 18(9): e0291042, 2023.
Article in English | MEDLINE | ID: mdl-37695775

ABSTRACT

In recent years, there has been a significant focus on synchronous reluctance motors (SynRM) owing to their impressive efficiency and absence of magnetic material. Although the SynRM shows great potential for use in electric vehicles, its widespread adoption is limited by unmodeled dynamics and external disturbances. Moreover, the uncertainty factor significantly restricts SynRM's peak efficiency and superior control performance, leading to an unjustifiable current loop reference command. To address these issues, this work presents various new research contributions which focus on the robust control of SynRM to optimize performance through the novel reaching law-based sliding mode control. Initially, a novel advanced sliding mode control reaching law (ASMCRL) with adaptive gain is proposed, to enhance the acceleration of the system state reaching the sliding surface. After that, an extended state observer (ESO) is designed to estimate and compensate for the overall disturbances of the system. Finally, the ASMCRL and ESO are integrated to design two nonlinear controllers namely, the disturbance-rejection sliding mode controller (DRSMC) and the disturbance-rejection sliding mode speed regulator (DRSMSR) for SynRM. The proposed DRSMSR eliminates the steady-state error and eradicates inherent chattering in DRSMC. Moreover, this yields a system trajectory that converges to a predetermined proximity of the sliding surface, irrespective of any lumped disturbances. The steady-state error of DRSMSR is less as compared to DRSMC. Furthermore, the speed response of this technique is 22.62% faster as compared to the state-of-the-art finite-time adaptive terminal sliding mode control. Additionally, the asymptotic stability of the proposed system is validated using Lyapunov's theorem. Thus the experimental results demonstrate the effectiveness and robustness of the proposed approach.

3.
PLoS One ; 18(4): e0280042, 2023.
Article in English | MEDLINE | ID: mdl-37053176

ABSTRACT

Biomedical telemetry relies heavily on implantable antennas. Due to this, we have designed and tested a compact, a circularly polarized, a low-profile biomedical implantable antenna that operate in the 2.45 GHz ISM band. In order to keep the antenna compact, modified co-planar waveguide (CPW) technology is used. Slotted rectangular patch with one 45-degree angle slot and truncated little patch on the left end of the ground plane generate a frequency-range antenna with circular polarization. Using a 0.25-millimeter-thick Roger Duroid-RT5880 substrate with a thickness of εr = 2.2, tanδ = 0.0009 provides flexibility. The volume of the antenna is 21 mm x 13.5 mm x 0.254 mm (0.25λg × 0.16λg × 0.003λg). The antenna covers 2.35-2.55 GHz (200 MHz) in free space and 1.63-1.17 GHz (1.17 GHz) in epidermal tissue. With skin tissue that has more bandwidth, the (x and y)-axis bends of the antenna are also simulated via the simulation. Bended antenna simulations and measurements show excellent agreement. At 2.45 GHz, the skin-like gel had -10dB impedance and 3dB axial ratio (AR) bandwidths of 47.7 and 53.8%, respectively. The ultimate result is that the SAR values are 0.78 W/kg in skin over 1 g of bulk tissue, as determined by simulations. The suggested SAR values are lower than the FCC's maximum allowable limit (FCC). This antenna is small enough to be implanted in the body, making it perfect for biomedical applications.


Subject(s)
Telemetry , Wireless Technology , Equipment Design , Computer Simulation , Electric Impedance
4.
Article in English | MEDLINE | ID: mdl-31600728

ABSTRACT

SUMMARY: We describe two cases of SGLT2i-induced euglycaemic diabetic ketoacidosis, which took longer than we anticipated to treat despite initiation of our DKA protocol. Both patients had an unequivocal diagnosis of type 2 diabetes, had poor glycaemic control with a history of metformin intolerance and presented with relatively vague symptoms post-operatively. Neither patient had stopped their SGLT2i pre-operatively, but ought to have by current treatment guidelines. LEARNING POINTS: SGLT2i-induced EDKA is a more protracted and prolonged metabolic derangement and takes approximately twice as long to treat as hyperglycaemic ketoacidosis. Surgical patients ought to stop SGLT2i medications routinely pre-operatively and only resume them after they have made a full recovery from the operation. While the mechanistic basis for EDKA remains unclear, our observation of marked ketonuria in both patients suggests that impaired ketone excretion may not be the predominant metabolic lesion in every case. Measurement of insulin, C-Peptide, blood and urine ketones as well as glucagon and renal function at the time of initial presentation with EDKA may help to establish why this problem occurs in specific patients.

5.
Sensors (Basel) ; 20(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905646

ABSTRACT

This work reviews design aspects of liquid metal antennas and their corresponding applications. In the age of modern wireless communication technologies, adaptability and versatility have become highly attractive features of any communication device. Compared to traditional conductors like copper, the flow property and lack of elasticity limit of conductive fluids, makes them an ideal alternative for applications demanding mechanically flexible antennas. These fluidic properties also allow innovative antenna fabrication techniques like 3D printing, injecting, or spraying the conductive fluid on rigid/flexible substrates. Such fluids can also be easily manipulated to implement reconfigurability in liquid antennas using methods like micro pumping or electrochemically controlled capillary action as compared to traditional approaches like high-frequency switching. In this work, we discuss attributes of widely used conductive fluids, their novel patterning/fabrication techniques, and their corresponding state-of-the-art applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...