Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(1): e0227566, 2020.
Article in English | MEDLINE | ID: mdl-31999720

ABSTRACT

Automatic optic disc (OD) localization and segmentation is not a simple process as the OD appearance and size may significantly vary from person to person. This paper presents a novel approach for OD localization and segmentation which is fast as well as robust. In the proposed method, the image is first enhanced by de-hazing and then cropped around the OD region. The cropped image is converted to HSV domain and then V channel is used for OD detection. The vessels are extracted from the Green channel in the cropped region by multi-scale line detector and then removed by the Laplace Transform. Local adaptive thresholding and region growing are applied for binarization. Furthermore, two region properties, eccentricity, and area are then used to detect the true OD region. Finally, ellipse fitting is used to fill the region. Several datasets are used for testing the proposed method. Test results show that the accuracy and sensitivity of the proposed method are much higher than the existing state-of-the-art methods.


Subject(s)
Image Processing, Computer-Assisted/methods , Optic Disk/diagnostic imaging , Algorithms , Artifacts , Databases, Factual , Humans
2.
Biomed Res Int ; 2017: 7432310, 2017.
Article in English | MEDLINE | ID: mdl-28466018

ABSTRACT

Regulating the depth of hypnosis during surgery is one of the major objectives of an anesthesia infusion system. Continuous administration of Propofol infusion during surgical procedures is essential but it unduly increases the load of an anesthetist working in a multitasking scenario in the operation theatre. Manual and target controlled infusion systems are not appropriate to handle instabilities like blood pressure and heart rate changes arising due to interpatient and intrapatient variability. Patient safety, large interindividual variability, and less postoperative effects are the main factors motivating automation in anesthesia administration. The idea of automated system for Propofol infusion excites control engineers to come up with more sophisticated systems that can handle optimum delivery of anesthetic drugs during surgery and avoid postoperative effects. A linear control technique is applied initially using three compartmental pharmacokinetic and pharmacodynamic models. Later on, sliding mode control and model predicative control achieve considerable results with nonlinear sigmoid model. Chattering and uncertainties are further improved by employing adaptive fuzzy control and H∞ control. The proposed sliding mode control scheme can easily handle the nonlinearities and achieve an optimum hypnosis level as compared to linear control schemes, hence preventing mishaps such as underdosing and overdosing of anesthesia.


Subject(s)
Anesthesia, Intravenous/methods , Anesthetics, Intravenous/therapeutic use , Hypnosis/methods , Propofol/therapeutic use , Electroencephalography , Humans , Infusions, Intravenous/methods , Monitoring, Intraoperative , Propofol/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...