Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Res ; 21(5): 411-427, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36669126

ABSTRACT

The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS: Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Ubiquitin Thiolesterase/genetics , Amino Acids , Arginine/metabolism , Mesothelioma/drug therapy , Mesothelioma/genetics , Cell Line, Tumor , Tumor Suppressor Proteins/genetics
2.
Elife ; 102021 05 17.
Article in English | MEDLINE | ID: mdl-33998996

ABSTRACT

What level of Ras genes activity leads to the development of cancer?


Subject(s)
Genes, ras , Codon
3.
J Biol Chem ; 290(41): 24760-71, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26294767

ABSTRACT

Evidence suggests that the plasma membrane Ca(2+)-ATPase (PMCA), which is critical for maintaining a low intracellular Ca(2+) concentration ([Ca(2+)]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca(2+)]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca(2+)]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca(2+)]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Membrane/enzymology , Glycolysis , Pancreatic Neoplasms/pathology , Plasma Membrane Calcium-Transporting ATPases/metabolism , Adenocarcinoma/pathology , Calcium/metabolism , Cell Line, Tumor , Cell Membrane/drug effects , Cytosol/drug effects , Cytosol/metabolism , Enzyme Inhibitors/pharmacology , Galactose/pharmacology , Glycolysis/drug effects , Humans , Iodoacetic Acid/pharmacology , Keto Acids/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Plasma Membrane Calcium-Transporting ATPases/antagonists & inhibitors
4.
Oncotarget ; 6(15): 13757-71, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25970771

ABSTRACT

Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors.


Subject(s)
Histone Deacetylase 1/biosynthesis , Histone Deacetylase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Mesothelioma/drug therapy , Mesothelioma/enzymology , Tumor Suppressor Proteins/deficiency , Ubiquitin Thiolesterase/deficiency , Apoptosis/drug effects , Cell Line, Tumor , Histone Deacetylase 2/biosynthesis , Histone Deacetylase 2/genetics , Humans , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...