Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Mater Chem B ; 11(32): 7721-7738, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37466082

ABSTRACT

With the aim to obtain targeted chemotherapeutic agents, imidazolium and ammonium-based folate salts were synthesized. Their photophysical behavior was investigated both in buffer and buffer/DMSO solution as well as in solid phase, performing UV-vis and fluorescence investigations. Properties of the aggregates were also analyzed by dynamic light scattering. Gelation ability of the salts was analyzed in biocompatible solvents, and gel phases obtained were characterized by determining critical gelation concentrations and gel-solution transition temperatures. Insights about gelator interactions in the tridimensional network were also gained performing ATR-FTIR investigation. Properties of soft materials were further analyzed performing rheology measurements, scanning electron microscopy, fluorescence and resonance light scattering investigations. Antiproliferative activity of organic salts was tested towards two breast cancer cell lines, expressing different levels of folate receptor, namely MDA-MB-231 and MCF-7, and a normal epithelial cell line, like h-TER T-RPE-1, by using MTT assay. Dichlodihydrofluorescein acetate test was performed to verify the role of oxidative stress in cell death. Finally, antiproliferative activity was also evaluated in gel phase, to verify if salts were able to retain biological activity also after the entrapment in the gelatinous network. Results collected evidence that folate based organic salts were able to behave as targeted chemotherapeutic agents both in solution and gel phase, showing uptake mechanism and selectivity indexes that depend on both cancer cell line nature and salt structure.


Subject(s)
Antineoplastic Agents , Salts , Salts/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Solvents/chemistry , Cell Line , Gels/chemistry
2.
Eur J Med Chem ; 253: 115339, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37054631

ABSTRACT

Pyrrolomycins (PMs) are a family of naturally occurring antibiotic agents, isolated from the fermentation broth of Actinosporangium and Streptomyces species. Pursuing our studies on pyrrolomycins, we performed the total synthesis of the F-series pyrrolomycins (1-4) by microwave-assisted synthesis (MAOS), thus obtaining the title compounds in excellent yields (63-69%). Considering that there is no evidence so far of the anticancer effect of this class of compounds, we investigated PMs for their antiproliferative activity against HCT116 and MCF-7 cancer cell lines. PMs showed anticancer activity at submicromolar level with a minimal effect on normal epithelial cell line (hTERT RPE-1), and they were able to induce several morphological changes including elongated cells, cytoplasm vacuolization, long and thin filopodia as well as the appearance of tunneling nanotubes (TNTs). These data suggest that PMs could act by impairing the cell membranes and the cytoskeleton organization, with subsequent increase of ROS generation and the activation of different forms of non-apoptotic cell death.


Subject(s)
Antineoplastic Agents , Streptomyces , Humans , Microwaves , Streptomyces/metabolism , Fermentation , MCF-7 Cells
3.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830271

ABSTRACT

Colorectal cancer (CRC) develops by genetic and epigenetic alterations. However, the molecular mechanisms underlying metastatic dissemination remain unclear and could benefit from multi-omics investigations of specific protein families. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in ECM remodeling and the processing of bioactive molecules. Increased MMP expression promotes the hallmarks of tumor progression, including angiogenesis, invasion, and metastasis, and is correlated with a shortened survival. Nevertheless, the collective role and the possible coordination of MMP members in CRC are poorly investigated. Here, we performed a multi-omics analysis of MMP expression in CRC using data mining and experimental investigations. Several databases were used to deeply mine different expressions between tumor and normal tissues, the genetic and epigenetic alterations, the prognostic value as well as the interrelationships with tumor immune-infiltrating cells (TIICs). A special focus was placed on to MMP2 and MMP9: their expression was correlated with immune markers and the interaction network of co-expressed genes disclosed their implication in epithelial to mesenchymal transition (EMT) and immune response. Finally, the activity levels of MMP2 and MMP9 in a cohort of colon cancer samples, including tissues and the corresponding sera, was also investigated by zymography. Our findings suggested that MMPs could have a high potency, as they are targeted in colon cancer, and might serve as novel biomarkers, especially for their involvement in the immune response. However, further studies are needed to explore the detailed biological functions and molecular mechanisms of MMPs in CRC, also in consideration of their expression and different regulation in several tissues.


Subject(s)
Colonic Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Case-Control Studies , Cohort Studies , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/mortality , Epigenesis, Genetic , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Prognosis , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism
4.
Biology (Basel) ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810095

ABSTRACT

Heat shock proteins (HSPs) are a well-characterized molecular chaperones protein family, classified into six major families, according to their molecular size. A wide range of tumors have been shown to express atypical levels of one or more HSPs, suggesting that they could be used as biomarkers. However, the collective role and the possible coordination of HSP members, as well as the prognostic significance and the functional implications of their deregulated expression in breast cancer (BC) are poorly investigated. Here, we used a systematic multi-omics approach to assess the HSPs expression, the prognostic value, and the underlying mechanisms of tumorigenesis in BC. By using data mining, we showed that several HSPs were deregulated in BC and significantly correlated with a poor or good prognosis. Functional network analysis of HSPs co-expressed genes and miRNAs highlighted their regulatory effects on several biological pathways involved in cancer progression. In particular, these pathways concerned cell cycle and DNA replication for the HSPs co-expressed genes, and miRNAs up-regulated in poor prognosis and Epithelial to Mesenchymal Transition (ETM), as well as receptors-mediated signaling for the HSPs co-expressed genes up-regulated in good prognosis. Furthermore, the proteomic expression of HSPs in a large sample-set of breast cancer tissues revealed much more complexity in their roles in BC and showed that their expression is quite variable among patients and confined into different cellular compartments. In conclusion, integrative analysis of multi-omics data revealed the distinct impact of several HSPs members in BC progression and indicate that collectively they could be useful as biomarkers and therapeutic targets for BC management.

5.
Antibiotics (Basel) ; 9(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486200

ABSTRACT

: Pyrrolomycins (PMs) are polyhalogenated antibiotics known as powerful biologically active compounds, yet featuring high cytotoxicity. The present study reports the antibacterial and antitumoral properties of new chemically synthesized PMs, where the three positions of the pyrrolic nucleus were replaced by nitro groups, aiming to reduce their cytotoxicity while maintaining or even enhancing the biological activity. Indeed, the presence of the nitro substituent in diverse positions of the pyrrole determined an improvement of the minimal bactericidal concentration (MBC) against Gram-positive (i.e., Staphylococcus aureus) or -negative (i.e., Pseudomonas aeruginosa) pathogen strains as compared to the natural PM-C. Moreover, some new nitro-PMs were as active as or more than PM-C in inhibiting the proliferation of colon (HCT116) and breast (MCF 7) cancer cell lines and were less toxic towards normal epithelial (hTERT RPE-1) cells. Altogether, our findings contribute to increase the knowledge of the mode of action of these promising molecules and provide a basis for their rationale chemical or biological manipulation.

6.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353950

ABSTRACT

Colon cancer is an aggressive tumor form with a poor prognosis. This study reports a comparative proteomic analysis performed by using two-dimensional differential in-gel electrophoresis (2D-DIGE) between 26 pooled colon cancer surgical tissues and adjacent non-tumoral tissues, to identify potential target proteins correlated with carcinogenesis. The DAVID functional classification tool revealed that most of the differentially regulated proteins, acting both intracellularly and extracellularly, concur across multiple cancer steps. The identified protein classes include proteins involved in cell proliferation, apoptosis, metabolic pathways, oxidative stress, cell motility, Ras signal transduction, and cytoskeleton. Interestingly, networks and pathways analysis showed that the identified proteins could be biologically inter-connected to the tumor-host microenvironment, including innate immune response, platelet and neutrophil degranulation, and hemostasis. Finally, transgelin (TAGL), here identified for the first time with four different protein species, collectively down-regulated in colon cancer tissues, emerged as a top-ranked biomarker for colorectal cancer (CRC). In conclusion, our findings revealed a different proteomic profiling in colon cancer tissues characterized by the deregulation of specific pathways involved in hallmarks of cancer. All of these proteins may represent promising novel colon cancer biomarkers and potential therapeutic targets, if validated in larger cohorts of patients.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Proteomics/methods , Adult , Electrophoresis, Gel, Two-Dimensional , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Protein Interaction Maps , Tumor Microenvironment
7.
Int J Mol Sci ; 20(16)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416219

ABSTRACT

Breast cancer is a complex and heterogeneous disease: Several molecular alterations cause cell proliferation and the acquisition of an invasive phenotype. Extracellular matrix (ECM) is considered essential for sustaining tumor growth and matrix metalloproteinases (MMPs) have been identified as drivers of many aspects of the tumor phenotype. Mounting evidence indicates that both α-enolase (ENO1) and Myc promoter-binding protein-1 (MBP-1) also played pivotal roles in tumorigenesis, although as antagonists. ENO1 is involved in cell growth, hypoxia tolerance and autoimmune activities besides its major role in the glycolysis pathway. On the contrary, MBP-1, an alternative product of ENO1, suppresses cell proliferation and the invasive ability of cancer cells. Since an important task in personalized medicine is to discriminate a different subtype of patients with different clinical outcomes including chances of recurrence and metastasis, we investigated the functional relationship between ENO1/MBP-1 expression and MMP-2 and MMP-9 activity levels in both tissues and sera of breast cancer patients. We focused on the clinical relevance of ENO1 and MMPs (MMP-2 and MMP-9) overexpression in breast cancer tissues: The association between the higher ENO1, MMP-2 and MMP-9 expression with a worse prognosis suggest that the elevated ENO1 and MMPs expression are promising biomarkers for breast cancer. A relationship seems to exist between MBP-1 expression and the decrease in the activity levels of MMP-9 in cancer tissues and MMP-2 in sera. Moreover, the sera of breast cancer patients grouped for MBP-1 expression differentially induced, in vitro, cell proliferation and migration. Our findings support the hypothesis of patient's stratification based on ENO1, MBP-1 and MMPs expression. Elucidating the molecular pathways through which MBP-1 influences MMPs expression and breast cancer regression can lead to the discovery of new management strategies.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Phosphopyruvate Hydratase/genetics , Tumor Suppressor Proteins/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism
8.
Oncotarget ; 9(49): 29064-29081, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-30018736

ABSTRACT

The S100 gene family is the largest subfamily of calcium binding proteins of EF-hand type, expressed in tissue and cell-specific manner, acting both as intracellular regulators and extracellular mediators. There is a growing interest in the S100 proteins and their relationships with different cancers because of their involvement in a variety of biological events closely related to tumorigenesis and cancer progression. However, the collective role and the possible coordination of this group of proteins, as well as the functional implications of their expression in breast cancer (BC) is still poorly known. We previously reported a large-scale proteomic investigation performed on BC patients for the screening of multiple forms of S100 proteins. Present study was aimed to assess the functional correlation between protein and gene expression patterns and the prognostic values of the S100 family members in BC. By using data mining, we showed that S100 members were collectively deregulated in BC, and their elevated expression levels were correlated with shorter survival and more aggressive phenotypes of BC (basal like, HER2 enriched, ER-negative and high grading). Moreover a multi-omics functional network analysis highlighted the regulatory effects of S100 members on several cellular pathways associated with cancer and cancer progression, expecially immune response and inflammation. Interestingly, for the first time, a pathway analysis was successfully applied on different omics data (transcriptomics and proteomics) revealing a good convergence between pathways affected by S100 in BC. Our data confirm S100 members as a promising panel of biomarkers for BC prognosis.

9.
Oncotarget ; 9(11): 9685-9705, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29515763

ABSTRACT

Silver nanoparticles (AgNPs), embedded into a specific polysaccharide (EPS), were biogenerated by Klebsiella oxytoca DSM 29614 under aerobic (AgNPs-EPSaer) and anaerobic conditions (AgNPs-EPSanaer). Both AgNPs-EPS matrices were tested by MTT assay for cytotoxic activity against human breast (SKBR3 and 8701-BC) and colon (HT-29, HCT 116 and Caco-2) cancer cell lines, revealing AgNPs-EPSaer as the most active, in terms of IC50, with a more pronounced efficacy against breast cancer cell lines. Therefore, colony forming capability, morphological changes, generation of reactive oxygen species (ROS), induction of apoptosis and autophagy, inhibition of migratory and invasive capabilities and proteomic changes were investigated using SKBR3 breast cancer cells with the aim to elucidate AgNPs-EPSaer mode of action. In particular, AgNPs-EPSaer induced a significant decrease of cell motility and MMP-2 and MMP-9 activity and a significant increase of ROS generation, which, in turn, supported cell death mainly through autophagy and in a minor extend through apoptosis. Consistently, TEM micrographs and the determination of total silver in subcellular fractions indicated that the Ag+ accumulated preferentially in mitochondria and in smaller concentrations in nucleus, where interact with DNA. Interestingly, these evidences were confirmed by a differential proteomic analysis that highlighted important pathways involved in AgNPs-EPSaer toxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment triggering cell death trough apoptosis and/or autophagy activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...