Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Adv Nutr ; 15(7): 100251, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825069
2.
J Vis Exp ; (199)2023 09 15.
Article in English | MEDLINE | ID: mdl-37782098

ABSTRACT

Chronic myocardial ischemia resulting from progressive coronary artery stenosis leads to hibernating myocardium (HIB), defined as myocardium that adapts to reduced oxygen availability by reducing metabolic activity, thereby preventing irreversible cardiomyocyte injury and infarction. This is distinct from myocardial infarction, as HIB has the potential for recovery with revascularization. Patients with significant coronary artery disease (CAD) experience chronic ischemia, which puts them at risk for heart failure and sudden death. The standard surgical intervention for severe CAD is coronary artery bypass graft surgery (CABG), but it has been shown to be an imperfect therapy, yet no adjunctive therapies exist to recover myocytes adapted to chronic ischemia. To address this gap, a surgical model of HIB using porcine that is amenable to CABG and mimics the clinical scenario was used. The model involves two surgeries. The first operation involves implanting a 1.5 mm rigid constrictor on the left anterior descending (LAD) artery. As the animal grows, the constrictor gradually causes significant stenosis resulting in reduced regional systolic function. Once the stenosis reaches 80%, the myocardial flow and function are impaired, creating HIB. An off-pump CABG is then performed with the left internal mammary artery (LIMA) to revascularize the ischemic region. The animal recovers for one month to allow for optimal myocardial improvement prior to sacrifice. This allows for physiologic and tissue studies of different treatment groups. This animal model demonstrates that cardiac function remains impaired despite CABG, suggesting the need for novel adjunctive interventions. In this study, a collagen patch embedded with mesenchymal stem cell (MSC)-derived exosomes was developed, which can be surgically applied to the epicardial surface distal to LIMA anastomosis. The material conforms to the epicardium, is absorbable, and provides the scaffold for the sustained release of signaling factors. This regenerative therapy can stimulate myocardial recovery that does not respond to revascularization alone. This model translates to the clinical arena by providing means of physiological and mechanistic explorations regarding recovery in HIB.


Subject(s)
Coronary Artery Bypass, Off-Pump , Coronary Artery Disease , Exosomes , Myocardial Ischemia , Humans , Animals , Swine , Constriction, Pathologic , Myocardial Ischemia/surgery , Coronary Artery Bypass/methods , Coronary Artery Disease/surgery
3.
J Thorac Cardiovasc Surg ; 166(6): e512-e530, 2023 12.
Article in English | MEDLINE | ID: mdl-37482241

ABSTRACT

OBJECTIVE: This study aimed to investigate whether or not the application of a stem cell-derived exosome-laden collagen patch (EXP) during coronary artery bypass grafting (CABG) can recover cardiac function by modulating mitochondrial bioenergetics and myocardial inflammation in hibernating myocardium (HIB), which is defined as myocardium with reduced blood flow and function that retains viability and variable contractile reserve. METHODS: In vitro methods involved exposing H9C2 cardiomyocytes to hypoxia followed by normoxic coculture with porcine mesenchymal stem cells. Mitochondrial respiration was measured using Seahorse assay. GW4869, an exosomal release antagonist, was used to determine the effect of mesenchymal stem cells-derived exosomal signaling on cardiomyocyte recovery. Total exosomal RNA was isolated and differential micro RNA expression determined by sequencing. In vivo studies comprised 48 Yorkshire-Landrace juvenile swine (6 normal controls, 17 HIB, 19 CABG, and 6 CABG + EXP), which were compared for physiologic and metabolic changes. HIB was created by placing a constrictor on the proximal left anterior descending artery, causing significant stenosis but preserved viability by 12 weeks. CABG was performed with or without mesenchymal stem cells-derived EXP application and animals recovered for 4 weeks. Before terminal procedure, cardiac magnetic resonance imaging at rest, and with low-dose dobutamine, assessed diastolic relaxation, systolic function, graft patency, and myocardial viability. Tissue studies of inflammation, fibrosis, and mitochondrial morphology were performed posttermination. RESULTS: In vitro data demonstrated improved cardiomyocyte mitochondrial respiration upon coculture with MSCs that was blunted when adding the exosomal antagonist GW4869. RNA sequencing identified 8 differentially expressed micro RNAs in normoxia vs hypoxia-induced exosomes that may modulate the expression of key mitochondrial (peroxisome proliferator-activator receptor gamma coactivator 1-alpha and adenosine triphosphate synthase) and inflammatory mediators (nuclear factor kappa-light-chain enhancer of activated B cells, interferon gamma, and interleukin 1ß). In vivo animal magnetic resonance imaging studies demonstrated regional systolic function and diastolic relaxation to be improved with CABG + EXP compared with HIB (P = .02 and P = .02, respectively). Histologic analysis showed increased interstitial fibrosis and inflammation in HIB compared with CABG + EXP. Electron microscopy demonstrated increased mitochondrial area, perimeter, and aspect ratio in CABG + EXP compared with HIB or CABG alone (P < .0001). CONCLUSIONS: Exosomes recovered cardiomyocyte mitochondrial respiration and reduced myocardial inflammation through paracrine signaling, resulting in improved cardiac function.


Subject(s)
Exosomes , Myocardial Stunning , Swine , Animals , Exosomes/metabolism , Coronary Artery Bypass/methods , Myocardium/pathology , Stem Cells/metabolism , Hypoxia/metabolism , Fibrosis , Inflammation/metabolism
4.
J Occup Environ Med ; 65(9): 740-744, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37367635

ABSTRACT

OBJECTIVE: The aim of the study is to describe rates of hematuria and other lower urinary tract symptoms, including self-reported cancer rates, among veterans postburn pits emissions exposure during deployment to Iraq and Afghanistan. METHODS: US post-9/11 veterans with burn pits emissions exposure confirmed via DD214 forms in the Burn Pits360.org Registry were sent a modified survey. Data were deidentified and anonymously coded. RESULTS: Twenty-nine percent of the 155 respondents exposed to burn pits self-reported seeing blood in their urine. The average index score of our modified American Urological Association Symptom Index Survey was 12.25 (SD, 7.48). High rates of urinary frequency (84%) and urgency (76%) were self-reported. Bladder, kidney, or lung cancers were self-reported in 3.87%. CONCLUSIONS: US veterans exposed to burn pits are self-reporting hematuria and other lower urinary tract symptoms.


Subject(s)
Lower Urinary Tract Symptoms , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Hematuria/epidemiology , Hematuria/etiology , Afghanistan , Iraq , Incineration , Iraq War, 2003-2011 , Afghan Campaign 2001- , Stress Disorders, Post-Traumatic/epidemiology
5.
Nutrients ; 15(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299457

ABSTRACT

Obesity, a known risk factor of Alzheimer's disease (AD), increases the activation of microglia, leading to a proinflammatory phenotype. Our previous work shows that a high fat diet (HFD) can cause neuroinflammation and cognitive decline in mice. We hypothesized that proinflammatory activation of brain microglia in obesity exacerbates AD pathology and increases the accumulation of amyloid beta (Aß) plaques. Presently, we tested cognitive function in 8-month-old male and female APP/PS1 mice fed a HFD, starting at 1.5 months of age. Locomotor activity, anxiety-like behavior, behavioral despair, and spatial memory were all assessed through behavioral tests. Microgliosis and Aß deposition were measured in multiple brain regions through immunohistochemical analysis. Our results show that a HFD decreases locomotor activity, while increasing anxiety-like behavior and behavioral despair independent of genotype. A HFD led to increased memory deficits in both sexes, with HFD-fed APP/PS1 mice performing the worst out of all groups. Immunohistochemical analysis showed increased microgliosis in mice fed a HFD. This was accompanied by an increase in Aß deposition in the HFD-fed APP/PS1 mice. Together, our results support that HFD-induced obesity exacerbates neuroinflammation and Aß deposition in a young adult AD mouse model, leading to increased memory deficits and cognitive decline in both sexes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Mice , Female , Animals , Alzheimer Disease/genetics , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Neuroinflammatory Diseases , Mice, Transgenic , Memory Disorders/complications , Cognitive Dysfunction/complications , Disease Models, Animal , Plaque, Amyloid/genetics , Obesity/complications , Presenilin-1/genetics
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982547

ABSTRACT

Diastolic dysfunction persists despite coronary artery bypass graft surgery (CABG) in patients with hibernating myocardium (HIB). We studied whether the adjunctive use of a mesenchymal stem cells (MSCs) patch during CABG improves diastolic function by reducing inflammation and fibrosis. HIB was induced in juvenile swine by placing a constrictor on the left anterior descending (LAD) artery, causing myocardial ischemia without infarction. At 12 weeks, CABG was performed using the left-internal-mammary-artery (LIMA)-to-LAD graft with or without placement of an epicardial vicryl patch embedded with MSCs, followed by four weeks of recovery. The animals underwent cardiac magnetic resonance imaging (MRI) prior to sacrifice, and tissue from septal and LAD regions were collected to assess for fibrosis and analyze mitochondrial and nuclear isolates. During low-dose dobutamine infusion, diastolic function was significantly reduced in HIB compared to the control, with significant improvement after CABG + MSC treatment. In HIB, we observed increased inflammation and fibrosis without transmural scarring, along with decreased peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), which could be a possible mechanism underlying diastolic dysfunction. Improvement in PGC1α and diastolic function was noted with revascularization and MSCs, along with decreased inflammatory signaling and fibrosis. These findings suggest that adjuvant cell-based therapy during CABG may recover diastolic function by reducing oxidant stress-inflammatory signaling and myofibroblast presence in the myocardial tissue.


Subject(s)
Cardiomyopathies , Myocardial Stunning , Swine , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Coronary Artery Bypass , Cardiomyopathies/pathology , Myocardium/pathology , Fibrosis , Stem Cells/pathology
7.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834799

ABSTRACT

Microglial fatty-acid binding protein 4 (FABP4) is a regulator of neuroinflammation. We hypothesized that the link between lipid metabolism and inflammation indicates a role for FABP4 in regulating high fat diet (HFD)-induced cognitive decline. We have previously shown that obese FABP4 knockout mice exhibit decreased neuroinflammation and cognitive decline. FABP4 knockout and wild type mice were fed 60% HFD for 12 weeks starting at 15 weeks old. Hippocampal tissue was dissected and RNA-seq was performed to measure differentially expressed transcripts. Reactome molecular pathway analysis was utilized to examine differentially expressed pathways. Results showed that HFD-fed FABP4 knockout mice have a hippocampal transcriptome consistent with neuroprotection, including associations with decreased proinflammatory signaling, ER stress, apoptosis, and cognitive decline. This is accompanied by an increase in transcripts upregulating neurogenesis, synaptic plasticity, long-term potentiation, and spatial working memory. Pathway analysis revealed that mice lacking FABP4 had changes in metabolic function that support reduction in oxidative stress and inflammation, and improved energy homeostasis and cognitive function. Analysis suggested a role for WNT/ß-Catenin signaling in the protection against insulin resistance, alleviating neuroinflammation and cognitive decline. Collectively, our work shows that FABP4 represents a potential target in alleviating HFD-induced neuroinflammation and cognitive decline and suggests a role for WNT/ß-Catenin in this protection.


Subject(s)
Cognitive Dysfunction , Neuroinflammatory Diseases , Animals , Mice , beta Catenin/metabolism , Cognitive Dysfunction/metabolism , Diet, High-Fat , Fatty Acid-Binding Proteins/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Transcriptome , Wnt Signaling Pathway
8.
J Thorac Cardiovasc Surg ; 165(6): e269-e279, 2023 06.
Article in English | MEDLINE | ID: mdl-36154976

ABSTRACT

OBJECTIVE: A porcine model was used to study diastolic dysfunction in hibernating myocardium (HM) and recovery with coronary artery bypass surgery (CABG). METHODS: HM was induced in Yorkshire-Landrace juvenile swine (n = 30) by placing a c-constrictor on left anterior descending artery causing chronic myocardial ischemia without infarction. At 12 weeks, animals developed the HM phenotype and were either killed humanely (HIB group; n = 11) or revascularized with CABG and allowed 4 weeks of recovery (HIB+CABG group; n = 19). Control pigs were matched for weight, age, and sex to the HIB group. Before the animals were killed humanely, cardiac magnetic resonance imaging (MRI) was done at rest and during a low-dose dobutamine infusion. Tissue was obtained for histologic and proinflammatory biomarker analyses. RESULTS: Diastolic peak filling rate was lower in HIB compared with control (5.4 ± 0.7 vs 6.7 ± 1.4 respectively, P = .002), with near recovery with CABG (6.3 ± 0.8, P = .06). Cardiac MRI confirmed preserved global systolic function in all groups. Histology confirmed there was no transmural infarction but showed interstitial fibrosis in the endomysium in both the HIB and HIB+CABG groups compared with normal myocardium. Alpha-smooth muscle actin stain identified increased myofibroblasts in HM that were less apparent post-CABG. Cytokine and proteomic studies in HM showed decreased peroxisome proliferator-activator receptor gamma coactivator 1-alpha (PGC1-α) expression but increased expression of granulocyte-macrophage colony-stimulating factor and nuclear factor kappa-light-chain enhancer of activated B cells (NFκB). Following CABG, PGC1-α and NFκB expression returned to control whereas granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, and interferon gamma remained increased. CONCLUSIONS: In porcine model of HM, increased NFκB expression, enhanced myofibroblasts, and collagen deposition along with decreased PGC1-α expression were observed, all of which tended toward normal with CABG. Estimates of impaired relaxation with MRI within HM during increased workload persisted despite CABG, suggesting a need for adjuvant therapies during revascularization.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Myocardial Stunning , Swine , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Proteomics , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Infarction
9.
Antioxidants (Basel) ; 11(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36358527

ABSTRACT

Ischemic heart disease affects millions of people around the world. Current treatment options, including coronary artery bypass grafting, do not result in full functional recovery, highlighting the need for novel adjunctive therapeutic approaches. Hibernation describes the myocardial response to prolonged ischemia and involves a set of complex cytoprotective metabolic and functional adaptations. PGC1-alpha, a key regulator of mitochondrial energy metabolism and inhibitor of oxidant-stress-inflammatory signaling, is known to be downregulated in hibernating myocardium. PGC1-alpha is a critical component of cellular stress responses and links cellular metabolism with inflammation in the ischemic heart. While beneficial in the acute setting, a chronic state of hibernation can be associated with self-perpetuating oxidant stress-inflammatory signaling which leads to tissue injury. It is likely that incomplete functional recovery following revascularization of chronically ischemic myocardium is due to persistence of metabolic changes as well as prooxidant and proinflammatory signaling. Enhancement of PGC1-alpha signaling has been proposed as a possible way to improve functional recovery in patients with ischemic heart disease. Adjunctive mesenchymal stem cell therapy has been shown to induce PGC1-alpha signaling in hibernating myocardium and could help improve clinical outcomes for patients undergoing bypass surgery.

10.
BMC Res Notes ; 15(1): 275, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953874

ABSTRACT

OBJECTIVE: Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS: Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.


Subject(s)
Incineration , Soot , Animals , Biomarkers , Carbon , Chronic Disease , Inflammation , Inhalation Exposure/adverse effects , Lung , Male , Rats , Rats, Sprague-Dawley , Soot/toxicity
11.
Int J Mol Sci ; 23(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35457171

ABSTRACT

The microglial fatty-acid-binding protein 4-uncoupling protein 2 (FABP4-UCP2) axis is a key regulator of neuroinflammation in high-fat-diet (HFD)-fed animals, indicating a role for FABP4 in brain immune response. We hypothesized that the FABP4-UCP2 axis is involved in regulating diet-induced cognitive decline. We tested cognitive function in mice lacking microglial FABP4 (AKO mice). Fifteen-week-old male AKO and wild-type (WT) mice were maintained on 60% HFD or normal chow (NC) for 12 weeks. Body composition was measured using EchoMRI. Locomotor activity, working memory, and spatial memory were assessed using behavioral tests (open field, T-maze, and Barnes maze, respectively). Hippocampal microgliosis was assessed via immunohistochemical staining. An inflammatory cytokine panel was assayed using hippocampal tissue. Real-time RT-PCR was performed to measure microglial UCP2 mRNA expression. Our data support that loss of FABP4 prevents cognitive decline in vivo. HFD-fed WT mice exhibited impaired long- and short-term memory, in contrast with HFD-fed AKO mice. HFD-fed WT mice had an increase in hippocampal inflammatory cytokine expression (IFNγ, IL-1ß, IL-5, IL-6, KC/GRO(CXCL1), IL-10, and TNFα) and microgliosis, and decreased microglial UCP2 expression. HFD-fed AKO mice had decreased hippocampal inflammatory cytokine expression and microgliosis and increased microglial UCP2 expression compared to HFD-fed WT mice. Collectively, our work supports the idea that the FABP4-UCP2 axis represents a potential therapeutic target in preventing diet-induced cognitive decline.


Subject(s)
Cognitive Dysfunction , Microglia , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Diet, High-Fat/adverse effects , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Microglia/metabolism , Neuroinflammatory Diseases , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
12.
BMC Nutr ; 8(1): 24, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35287731

ABSTRACT

BACKGROUND: Elevated concentrations of myostatin inhibit muscle growth, function and strength. Myostatin is a mediator of sarcopenia and is associated with insulin resistance. For this study we tested the response of a calorie-restricted Dietary Approaches to Stop Hypertension (DASH) diet on changes in myostatin, follistatin, and mystatin:follistatin ratio levels after 12 weeks in comparison to basline in adults aged 65 years and older. Furthermore we evaluated correlations between changes in myostatin, body composition and cardiometabolic biomarkers in this cohort of older adults. METHODS: This was a controlled-feeding diet intervention study in which females (n = 17) and males (n = 11) aged 65 years and older consumed either 85 g (n = 15) or 170 g (n = 13) of fresh lean beef within a standardized DASH diet for 12-weeks. Myostatin and follistatin concentrations were measured from fasted blood samples collected at 5 timepoints throughout the 12-week feeding intervention period. Correlations were assessed between changes in myostatin and follistatin levels and measures of body composition and cardiometabolic biomarkers. RESULTS: There were no differences (p > 0.05) in circulating myostatin or follistatin levels between the beef intake groups. However, with beef groups combined myostatin decreased by 17.6% (p = 0.006) and the myostatin-to-follistatin ratio decreased by 16.5% (p < 0.001) in response to the study diet. Decreased myostatin was positively correlated with reductions in waist circumference (R2 = 0.163; p = 0.033) and fat mass (R2 = 0.233; p = 0.009). There was an inverse relationship between decreased myostatin and increased strength-to-weight ratio (R2 = 0.162; p = 0.034). The change in myostatin-to-follistatin ratio was associated with the change in skeletal muscle mass-to-fat mass ratio (R2 = 0.176; p = 0.026). Decreased myostatin was positively correlated with reductions in total cholesterol (R2 = 0.193; p = 0.012), LDL-C (R2 = 0.163; p = 0.031), insulin (R2 = 0.234; p = 0.009), and HOMA-IR (R2 = 0.248; P = 0.007). There was no change (p > 0.05) in circulating follistatin concentrations in response to the diet intervention. CONCLUSIONS: The outcomes from this study suggest that a calorie-restricted DASH diet has the potential to reduce myostatin concentrations in older adults. Furthermore these outcomes support interrelationships between myostatin, body composition and cardiometabolic health in adults aged 65 years and older. TRIAL REGISTRATION: ClinicalTrials.gov; Identifier: NCT04127240 ; Registration Date: 15/10/ 2019.

13.
BMC Res Notes ; 12(1): 816, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31852524

ABSTRACT

OBJECTIVE: Gulf War Illness is a chronic multisymptom disorder severely impacting the health and well-being of many Veterans of the 1990-1991 Gulf War. Symptoms that define the disease include pain, fatigue, mood and memory impairments, gastrointestinal problems, lung disorders, and skin rashes. In our previous biomarker study, we discovered Gulf War Illness-associated proinflammatory blood biomarkers. Therefore, we hypothesized that chronic inflammation causes the symptoms that define this disorder. Testing the chronic inflammation hypothesis is the objective of this study. RESULTS: The biomarker fingerprint of Gulf War Illness is the end-product of a cascade of proinflammatory cytokine signals. In particular, the observed increase in C-reactive protein predicts a corresponding increase in interleukin 6, the cytokine that stimulates hepatocytes to produce C-reactive protein. Therefore, in this study we measured potential upstream cytokine signals in plasma samples from Gulf War Veterans. As predicted, a positive correlation between interleukin 6 and C-reactive protein was observed.


Subject(s)
C-Reactive Protein/metabolism , Inflammation/blood , Interleukin-6/blood , Persian Gulf Syndrome/blood , Biomarkers/blood , Case-Control Studies , Chronic Disease , Gulf War , Humans , Veterans
14.
Fed Pract ; 36(5): 212-219, 2019 May.
Article in English | MEDLINE | ID: mdl-31138975

ABSTRACT

Physicians need to recognize and manage Gulf War illness and similar postdeployment, chronic, multisymptom diseases among veterans of recent military operations.

15.
Cell Med ; 11: 2155179019834938, 2019.
Article in English | MEDLINE | ID: mdl-32634193

ABSTRACT

Hibernating myocardium is a subset of ischemic cardiac disease characterized by viable but dysfunctional tissue. Standard treatment for hibernating myocardium is coronary artery bypass graft, which reduces arrhythmias and improves survival but does not fully restore function, presenting a gap in currently available treatments. Large animal studies of hibernating myocardium have identified impaired mitochondrial dynamics as a root cause of persistent cardiac dysfunction despite surgical revascularization. This study presents a novel in vitro model of hibernating myocardium cardiomyocytes to study active mitochondrial respiration in hibernating myocardium cells, and to test the paracrine effect of mesenchymal stem cells on impaired mitochondrial function. Exposure of cardiomyocytes to hypoxic conditions of 1% oxygen for 24 hours resulted in a phenotype consistent with hibernating myocardium cardiac tissue, including decreased respiratory capacity under high work states, decreased expression of mitochondrial proteins, and preserved cellular viability. Co-culture of hibernating myocardium cardiomyocytes with mesenchymal stem cells restored mitochondrial respiratory function, potentially via an increase in proliferator-activated receptor gamma coactivator 1-alpha-driven mitochondrial biogenesis. Co-culture treatment of hibernating myocardium cardiomyocytes with mesenchymal stem cells shows improvement in both mitochondrial function and ATP production, both of which are critical for effectively functioning cardiac tissue. These results suggest that mesenchymal stem cell therapy as an adjunct treatment to revascularization may address the current gap in treatment for hibernating myocardium patients.

16.
Nanomaterials (Basel) ; 8(3)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29522448

ABSTRACT

The brain is the central regulator for integration and control of responses to environmental cues. Previous studies suggest that air pollution may directly impact brain health by triggering the onset of chronic neuroinflammation. We hypothesize that nanoparticle components of combustion-generated air pollution may underlie these effects. To test this association, a microglial in vitro biological sensor model was used for testing neuroinflammatory response caused by low-dose nanoparticle exposure. The model was first validated using 20 nm silver nanoparticles (AgNP). Next, neuroinflammatory response was tested after exposure to size-selected 20 nm combustion-generated nanoparticles (CGNP) collected from a modern diesel engine. We show that low concentrations of CGNPs promote low-grade inflammatory response indicated by increased pro-inflammatory cytokine release (tumor necrosis factor-α), similar to that observed after AgNP exposure. We also demonstrate increased production of reactive oxygen species and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation in microglia after CGNP stimulation. Finally, we show conditioned media from CGNP-stimulated microglia significantly reduced hypothalamic neuronal survival in vitro. To our knowledge, this data show for the first time that exposure to AgNP and CGNP elicits microglial neuroinflammatory response through the activation of NF-κB.

17.
Neurobiol Learn Mem ; 146: 21-30, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29107703

ABSTRACT

Orexin A is produced in neurons of the lateral, perifornical and dorsomedial regions of the lateral hypothalamic area, which then project widely throughout the central nervous system to regulate arousal state, sleep-wake architecture, energy homeostasis and cognitive processes. Disruption of orexin signaling leads to sleep disturbances and increased body mass index, but recent studies also indicate that orexin neuron activation improves learning and memory. We hypothesized that hippocampal orexin receptor activation improves memory. To test this idea, we obtained orexin/ataxin-3 (O/A3) mice, which become deficient in orexin neurons by about 12 weeks of age. We first measured hippocampal orexin receptor 1 (OX1R) gene expression and protein levels, then tested acquisition and consolidation of two-way active avoidance (TWAA) memory, a hippocampal-dependent learning and memory task. Finally, we determined if exogenous intra-hippocampal OXA treatment could reverse cognitive impairment (as determined by TWAA) in OA/3 mice. We showed that OX1R mRNA expression and protein levels were significantly elevated in O/A3 mice, indicating the potential for preserved orexin responsiveness. The O/A3 mice were significantly impaired in TWAA memory vs. control mice, but OXA treatment (both acute and chronic) reversed these memory deficits. These results demonstrate that orexin plays an important role in hippocampal-dependent consolidation of two-way active avoidance memory, and orexin replacement can rescue the cognitive impairment.


Subject(s)
Avoidance Learning , Cognitive Dysfunction , Hippocampus , Memory Consolidation , Memory Disorders , Orexin Receptors/metabolism , Orexins/deficiency , Orexins/pharmacology , Animals , Ataxin-3 , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Memory Consolidation/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Memory Disorders/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Orexin Receptors/genetics , Orexins/administration & dosage , RNA, Messenger/metabolism
18.
Mol Cell Neurosci ; 80: 52-57, 2017 04.
Article in English | MEDLINE | ID: mdl-28214555

ABSTRACT

Hypothalamic inflammation contributes to metabolic dysregulation and the onset of obesity. Dietary saturated fats activate microglia via a nuclear factor-kappa B (NFκB) mediated pathway to release pro-inflammatory cytokines resulting in dysfunction or death of surrounding neurons. Fatty acid binding proteins (FABPs) are lipid chaperones regulating metabolic and inflammatory pathways in response to fatty acids. Loss of FABP4 in peripheral macrophages via either molecular or pharmacologic mechanisms results in reduced obesity-induced inflammation via a UCP2-redox based mechanism. Despite the widespread appreciation for the role of FABP4 in mediating peripheral inflammation, the expression of FABP4 and a potential FABP4-UCP2 axis regulating microglial inflammatory capacity is largely uncharacterized. To that end, we hypothesized that microglial cells express FABP4 and that inhibition would upregulate UCP2 and attenuate palmitic acid (PA)-induced pro-inflammatory response. Gene expression confirmed expression of FABP4 in brain tissue lysate from C57Bl/6J mice and BV2 microglia. Treatment of microglial cells with an FABP inhibitor (HTS01037) increased expression of Ucp2 and arginase in the presence or absence of PA. Moreover, cells exposed to HTS01037 exhibited attenuated expression of inducible nitric oxide synthase (iNOS) compared to PA alone indicating reduced NFκB signaling. Hypothalamic tissue from mice lacking FABP4 exhibit increased UCP2 expression and reduced iNOS, tumor necrosis factor-alpha (TNF-α), and ionized calcium-binding adapter molecule 1 (Iba1; microglial activation marker) expression compared to wild type mice. Further, this effect is negated in microglia lacking UCP2, indicating the FABP4-UCP2 axis is pivotal in obesity induced neuroinflammation. To our knowledge, this is the first report demonstrating a FABP4-UCP2 axis with the potential to modulate the microglial inflammatory response.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Gene Expression Regulation/physiology , Microglia/metabolism , Uncoupling Protein 2/genetics , Animals , Anti-Inflammatory Agents/pharmacology , Arginase/metabolism , Brain/cytology , Calcium-Binding Proteins/metabolism , Cell Line, Transformed , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/genetics , Gene Expression Regulation/drug effects , Hypothalamus/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/drug effects , Nitric Oxide Synthase Type II/metabolism , Palmitic Acid/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/metabolism , Uncoupling Protein 2/metabolism
19.
J Vis Exp ; (116)2016 10 25.
Article in English | MEDLINE | ID: mdl-27805611

ABSTRACT

Nanoparticles found in air pollutants can alter neurotransmitter profiles, increase neuroinflammation, and alter brain function. Therefore, the assay described here will aid in elucidating the role of microglia in neuroinflammation and neurodegenerative diseases. The use of microglia, resident immune cells of the brain, as a surrogate biosensor provides novel insight into how inflammatory responses mediate neuronal insults. Here, we utilize an immortalized murine microglial cell line, designated BV2, and describe a method for nanoparticle exposure using silver nanoparticles (AgNPs) as a standard. We describe how to expose microglia to nanoparticles, how to remove nanoparticles from supernatant, and how to use supernatant from activated microglia to determine toxicity, using hypothalamic cell survival as a measure. Following AgNP exposure, BV2 microglial activation was validated using a tumor necrosis factor alpha (TNF-α) enzyme linked immunosorbent assay (ELISA). The supernatant was filtered to remove the AgNP and to allow cytokines and other secreted factors to remain in the conditioned media. Hypothalamic cells were then exposed to supernatant from AgNP activated microglia and survival of neurons was determined using a resazurin-based fluorescent assay. This technique is useful for utilizing microglia as a surrogate biomarker of neuroinflammation and determining the effect of neuroinflammation on other cell types.


Subject(s)
Biosensing Techniques , Microglia , Nanoparticles/toxicity , Animals , Cell Line , Cell Survival , Cells, Cultured , Hypothalamus , Mice , Toxicity Tests , Tumor Necrosis Factor-alpha
20.
Mol Cell Neurosci ; 75: 93-100, 2016 09.
Article in English | MEDLINE | ID: mdl-27449757

ABSTRACT

Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health.


Subject(s)
Apoptosis , Neurons/drug effects , Neuroprotective Agents/pharmacology , Orexins/pharmacology , Palmitic Acid/toxicity , Adenosine Triphosphate/metabolism , Animals , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line , Cell Respiration , Hypothalamus/cytology , Mice , Neurons/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...