Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 78(9): 3256-65, 2012 May.
Article in English | MEDLINE | ID: mdl-22344648

ABSTRACT

The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δµ)(2) genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates.


Subject(s)
Chimera , Industrial Microbiology , Saccharomyces/growth & development , Saccharomyces/genetics , Wine/microbiology , Comparative Genomic Hybridization , DNA, Fungal/chemistry , DNA, Fungal/genetics , Evolution, Molecular , France , Genetic Variation , Germany , Hungary , Microarray Analysis , Microsatellite Repeats , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Recombination, Genetic , Saccharomyces/metabolism , Sequence Analysis, DNA , United States
2.
Theor Appl Genet ; 109(5): 1017-27, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15184982

ABSTRACT

The aim of the present work was to develop a microsatellite marker-based map of the Vitis vinifera genome (n=19), useful for genetic studies in this perennial heterozygous species, as SSR markers are highly transferable co-dominant markers. A total of 346 primer pairs were tested on the two parents (Syrah and Grenache) of a full sib population of 96 individuals (S x G population), successfully amplifying 310 markers. Of these, 88.4% markers were heterozygous for at least one of the two parents. A total of 292 primer pairs were then tested on Riesling, the parent of the RS1 population derived from selfing (96 individuals), successfully amplifying 299 markers among which 207 (62.9%) were heterozygous. Only 6.7% of the markers were homozygous in all three genotypes, stressing the interest of such markers in grape genetics. Four maps were constructed based on the segregation of 245 SSR markers in the two populations. The Syrah map was constructed from the segregations of 177 markers that could be ordered into 19 linkage groups (total length 1,172.2 cM). The Grenache map was constructed with the segregations of 178 markers that could be ordered into 18 linkage groups (total length 1,360.6 cM). The consensus S x G map was constructed with the segregations of 220 markers that were ordered into 19 linkage groups (total length 1,406.1 cM). One hundred and eleven markers were scored on the RS1 population, among them 27 that were not mapped using the S x G map. Out of these 111 markers, 110 allowed to us to construct a map of a total length of 1,191.7 cM. Using these four maps, the genome length of V. vinifera was estimated to be around 2,200 cM. The present work allowed us to map 123 new SSR markers on the V. vinifera genome that had not been ordered in a previous SSR-based map (Riaz et al. 2004), representing an average of 6.5 new markers per linkage group. Any new SSR marker mapped is of great potential usefulness for many applications such as the transfer of well-scattered markers to other maps for QTL detection, the use of markers in specific regions for the fine mapping of genes/QTL, or for the choice of markers for MAS.


Subject(s)
Chromosome Mapping , Genome, Plant , Vitis/genetics , Agriculture/methods , Breeding/methods , Crosses, Genetic , DNA Primers , Electrophoresis , France , Minisatellite Repeats/genetics , Nucleic Acid Amplification Techniques , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...