Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Phenomics ; 5: 0116, 2023.
Article in English | MEDLINE | ID: mdl-38026470

ABSTRACT

The strong societal demand to reduce pesticide use and adaptation to climate change challenges the capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than models obtained with the exposed leaf area estimated from images and the destructive pruning weight measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of grapevines in the vineyard.

2.
BMC Plant Biol ; 21(1): 487, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34696712

ABSTRACT

BACKGROUND: Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS: A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS: The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.


Subject(s)
Alternative Splicing , Fruit/growth & development , Fruit/genetics , Genotype , Phenotype , Vitis/growth & development , Vitis/genetics , Climate Change , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Plant Breeding/methods
3.
Theor Appl Genet ; 133(3): 993-1008, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932953

ABSTRACT

KEY MESSAGE: In a grapevine segregating population, genomic regions governing berry pH were identified, paving the way for breeding new grapevine varieties best adapted to a warming climate. As a consequence of global warming, grapevine berry acidity is expected to dramatically decrease. Adapting grapevine (Vitis vinifera L.) varieties to the climatic conditions of the future requires a better understanding of the genetic architecture of acidity-related traits. For this purpose, we studied during five growing seasons 120 individuals from a grapevine biparental cross. Each offspring was genotyped by simple sequence repeats markers and by hybridization on a 20-K Grapevine Illumina® SNP chip. Quantitative trait loci (QTLs) for pH colocalized with QTLs for the ratio between potassium and tartaric acid concentrations, on chromosomes 10, 11 and 13. Strong QTLs for malic acid concentration or for the malic acid-to-tartaric acid ratio, on chromosomes 6 and 8, were not associated with variations of pH but can be useful for controlling pH stability under high temperatures. Our study highlights the interdependency between acidity parameters and consequently the constraints and degrees of freedom for designing grapevine genotypes better adapted to the expected warmer climatic conditions. In particular, it is possible to create grapevine genotypes with a high berry acidity as the result of both high tartaric acid concentrations and low K+ accumulation capacities.


Subject(s)
Acids/metabolism , Fruit/genetics , Genes, Plant , Potassium/metabolism , Vitis/genetics , Alleles , Chromosome Mapping , Climate Change , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Hot Temperature , Hydrogen-Ion Concentration , Malates/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Quantitative Trait Loci
4.
Theor Appl Genet ; 124(4): 623-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22052019

ABSTRACT

The genetic determinism of developmental stages in grapevine was studied in the progeny of a cross between grapevine cultivars Riesling and Gewurztraminer by combining ecophysiological modelling, genetic analysis and data mining of the grapevine whole genome sequence. The dates of three phenological stages, budbreak, flowering and veraison, were recorded during four successive years for 120 genotypes in the vineyard. The phenotypic data analysed were the duration of three periods expressed in thermal time (degree-days): 15 February to budbreak (Bud), budbreak to flowering (Flo) and flowering to veraison (Ver). Parental and consensus genetic maps were built using 153 microsatellite markers on 188 individuals. Six independent quantitative trait loci (QTLs) were detected for the three phases. They were located on chromosomes 4 and 19 for Bud, chromosomes 7 and 14 for Flo and chromosomes 16 and 18 for Ver. Interactions were detected between loci and also between alleles at the same locus. Using the available grapevine whole-genome sequences, candidate genes underlying the QTLs were identified. VvFT, on chromosome 7, and a CONSTANS-like gene, on chromosome 14, were found to colocalise with the QTLs for flowering time. Genes related to the abscisic acid response and to sugar metabolism were detected within the confidence intervals of QTLs for veraison time. Their possible roles in the developmental process are discussed. These results raise new hypotheses for a better understanding of the physiological processes governing grapevine phenology and provide a framework for breeding new varieties adapted to the future predicted climatic conditions.


Subject(s)
Acclimatization , Climate Change , Fruit/genetics , Genes, Plant , Quantitative Trait Loci , Vitis/growth & development , Vitis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Genotype , Microsatellite Repeats/genetics , Phenotype
5.
Theor Appl Genet ; 118(7): 1261-78, 2009 May.
Article in English | MEDLINE | ID: mdl-19238349

ABSTRACT

A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon x Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0-34.4 and 28.9-31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14-70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.


Subject(s)
Flowers , Immunity, Innate/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Vitis , Animals , Chromosome Mapping , Chromosomes, Plant , Flowers/anatomy & histology , Flowers/microbiology , Genetic Linkage , Genetic Markers , Humans , Microsatellite Repeats , Phenotype , Polymorphism, Genetic , Quantitative Trait Loci , Sex Determination Processes , Vitis/anatomy & histology , Vitis/genetics , Vitis/microbiology
6.
Theor Appl Genet ; 118(3): 541-52, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19002427

ABSTRACT

Linalool, geraniol, nerol, citronellol and alpha-terpineol are isoprenoid molecules responsible for specific aromas found in grapes and wines. Total concentrations (free and bound forms) of these compounds were measured in the skins of mature berries during 2 successive years in two progenies obtained from Muscat Ottonel and Gewurztraminer selfings. Partial genetic maps based on microsatellite markers were constructed and several quantitative trait loci (QTLs) related to terpenol content were detected. A major QTL on linkage group (LG) 5 colocated with a deoxy-D: -xylulose synthase gene, coding for the first enzyme of the plastidial isoprenoid biosynthesis pathway. The number of favourable alleles at this locus determined the level of terpenol synthesis. A second QTL, on LG 10, was found to determine the balance linalool versus geraniol and nerol in the Muscat self-progeny plants.


Subject(s)
Plant Proteins/genetics , Quantitative Trait Loci , Terpenes/metabolism , Vitis/genetics , Acyclic Monoterpenes , Chromosome Mapping , Chromosomes, Plant , Cyclohexane Monoterpenes , Cyclohexenes/metabolism , Genetic Linkage , Minisatellite Repeats , Monoterpenes/metabolism , Vitis/enzymology , Vitis/metabolism
7.
BMC Plant Biol ; 5: 20, 2005 Sep 29.
Article in English | MEDLINE | ID: mdl-16194273

ABSTRACT

BACKGROUND: Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2). When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant. RESULTS: Genetically Chardonnay clone 96 is a periclinal chimera plant in which is L1 and L2 cell layers are distinct. Plants obtained via organogenesis through meristematic bulks are shown to be composed of both cell layers. However, plants regenerated through somatic embryogenesis starting from anthers or nodal explants are composed only of L1 cells. These somaclones do not show phenotypic differences to the parental clone up to three years after regeneration. Interestingly, the only somaclone showing an atypical phenotype (asymmetric leave) shows a genotypic modification. CONCLUSION: These results suggest that the phenotype of Chardonnay 96 does not result from an interaction between the two distinct cell layers L1 and L2. If phenotype conformity is further confirmed, somatic embryogenesis will result in true-to-type somaclones of Chardonnay 96 and would be well suitable for gene transfer.


Subject(s)
Chimera/genetics , Vitis/embryology , Vitis/genetics , Cloning, Organism , Genetic Markers , Genotype , Meristem/anatomy & histology , Meristem/genetics , Meristem/growth & development , Organogenesis/genetics , Phenotype , Plant Shoots/anatomy & histology , Plant Shoots/genetics , Plant Shoots/growth & development , Regeneration/genetics , Vitis/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...