Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Annu Rev Biomed Eng ; 25: 23-49, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36854261

ABSTRACT

The need for hydration monitoring is significant, especially for the very young and elderly populations who are more vulnerable to becoming dehydrated and suffering from the effects that dehydration brings. This need has been among the drivers of considerable effort in the academic and commercial sectors to provide a means for monitoring hydration status, with a special interest in doing so outside the hospital or clinical setting. This review of emerging technologies provides an overview of many technology approaches that, on a theoretical basis, have sensitivity to water and are feasible as a routine measurement. We review the evidence of technical validation and of their use in humans. Finally, we highlight the essential need for these technologies to be rigorously evaluated for their diagnostic potential, as a necessary step to meet the need for hydration monitoring outside of the clinical environment.


Subject(s)
Dehydration , Water , Humans , Aged , Dehydration/diagnosis
2.
J Med Internet Res ; 24(8): e37368, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35943786

ABSTRACT

BACKGROUND: Patients with cancer undergoing cytotoxic chemotherapy face an elevated risk of developing serious infection as a consequence of their treatment, which lowers their white blood cell count and, more specifically, their absolute neutrophil count. This condition is known as neutropenia. Neutropenia accompanied by a fever is referred to as febrile neutropenia, a common side effect of chemotherapy with a high mortality rate. The timely detection of severe neutropenia (<500 absolute neutrophil count/µL) is critical in detecting and managing febrile neutropenia. Current methods rely on blood draws, which limit them to clinical settings and do not allow frequent or portable monitoring. In this study, we demonstrated the usability of PointCheck, a noninvasive device for neutropenia screening, in a simulated home environment without clinical supervision. PointCheck automatically performs microscopy through the skin of the finger to image the blood flowing through superficial microcapillaries and enables the remote monitoring of neutropenia status, without requiring venipuncture. OBJECTIVE: This study aimed to evaluate the usability of PointCheck, a noninvasive optical technology for screening severe neutropenia, with the goal of identifying potential user interface, functionality, and design issues from the perspective of untrained users. METHODS: We conducted a multicenter study using quantitative and qualitative approaches to evaluate the usability of PointCheck across 154 untrained participants. We used a mixed method approach to gather usability data through user testing observations, a short-answer qualitative questionnaire, and a standardized quantitative System Usability Scale (SUS) survey to assess perceived usability and satisfaction. RESULTS: Of the 154 participants, we found that 108 (70.1%) scored above 80.8 on the SUS across all sites, with a mean SUS score of 86.1 across all sites. Furthermore, the SUS results indicated that, out of the 151 users who completed the SUS survey, 145 (96%) found that they learned how to use PointCheck very quickly, and 141 (93.4%) felt very confident when using the device. CONCLUSIONS: We have shown that PointCheck, a novel technology for noninvasive, home-based neutropenia detection, can be safely and effectively operated by first-time users. In a simulated home environment, these users found it easy to use, with a mean SUS score of 86.1, indicating an excellent perception of usability and placing this device within the top tenth percentile of systems evaluated for usability by the SUS. TRIAL REGISTRATION: ClinicalTrials.gov NCT04448314; https://clinicaltrials.gov/ct2/show/NCT04448314 (Hospital Universitario 12 de Octubre registration) and NCT04448301; https://clinicaltrials.gov/ct2/show/NCT04448301 (Boston Medical Center registration).


Subject(s)
Febrile Neutropenia , Neoplasms , Early Detection of Cancer , Humans , Mass Screening , Neoplasms/drug therapy , Surveys and Questionnaires
3.
Biomed Opt Express ; 11(4): 2268-2276, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32341882

ABSTRACT

Quantification of optical absorption gaps in nailfold capillaries has recently shown promise as a non-invasive technique for neutropenia screening. Here we demonstrate a low-cost, portable attachment to a mobile phone that can resolve optical absorption gaps in nailfold capillaries using a reverse lens technique and oblique 520nm illumination. Resolution <4µm within a 1mm2 on-axis region is demonstrated, and wide field of view (3.5mm × 4.8mm) imaging is achieved with resolution <6µm in the periphery. Optical absorption gaps (OAGs) are visible in superficial capillary loops of a healthy human participant by an ∼8-fold difference in contrast-to-noise ratio with respect to red blood cell absorption contrast. High speed video capillaroscopy up to 240 frames per second (fps) is possible, though 60fps is sufficient to resolve an average frequency of 37 OAGs/minute passing through nailfold capillaries. The simplicity and portability of this technique may enable the development of an effective non-invasive tool for white blood cell screening in point-of-care and global health settings.

4.
Mov Disord ; 34(10): 1488-1495, 2019 10.
Article in English | MEDLINE | ID: mdl-31211469

ABSTRACT

OBJECTIVE: The recent advances in technology are opening a new opportunity to remotely evaluate motor features in people with Parkinson's disease (PD). We hypothesized that typing on an electronic device, a habitual behavior facilitated by the nigrostriatal dopaminergic pathway, could allow for objectively and nonobtrusively monitoring parkinsonian features and response to medication in an at-home setting. METHODS: We enrolled 31 participants recently diagnosed with PD who were due to start dopaminergic treatment and 30 age-matched controls. We remotely monitored their typing pattern during a 6-month (24 weeks) follow-up period before and while dopaminergic medications were being titrated. The typing data were used to develop a novel algorithm based on recursive neural networks and detect participants' responses to medication. The latter were defined by the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) minimal clinically important difference. Furthermore, we tested the accuracy of the algorithm to predict the final response to medication as early as 21 weeks prior to the final 6-month clinical outcome. RESULTS: The score on the novel algorithm based on recursive neural networks had an overall moderate kappa agreement and fair area under the receiver operating characteristic (ROC) curve with the time-coincident UPDRS-III minimal clinically important difference. The participants classified as responders at the final visit (based on the UPDRS-III minimal clinically important difference) had higher scores on the novel algorithm based on recursive neural networks when compared with the participants with stable UPDRS-III, from the third week of the study onward. CONCLUSIONS: This preliminary study suggests that remotely gathered unsupervised typing data allows for the accurate detection and prediction of drug response in PD. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Habits , Parkinson Disease/drug therapy , Cognition/physiology , Female , Humans , Male , Minimal Clinically Important Difference , Parkinson Disease/diagnosis , ROC Curve , Severity of Illness Index
6.
Sci Rep ; 8(1): 5301, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29593221

ABSTRACT

White-blood-cell (WBC) assessment is employed for innumerable clinical procedures as one indicator of immune status. Currently, WBC determinations are obtained by clinical laboratory analysis of whole blood samples. Both the extraction of blood and its analysis limit the accessibility and frequency of the measurement. In this study, we demonstrate the feasibility of a non-invasive device to perform point-of-care WBC analysis without the need for blood draws, focusing on a chemotherapy setting where patients' neutrophils-the most common type of WBC-become very low. In particular, we built a portable optical prototype, and used it to collect 22 microcirculatory-video datasets from 11 chemotherapy patients. Based on these videos, we identified moving optical absorption gaps in the flow of red cells, using them as proxies to WBC movement through nailfold capillaries. We then showed that counting these gaps allows discriminating cases of severe neutropenia (<500 neutrophils per µL), associated with increased risks of life-threatening infections, from non-neutropenic cases (>1,500 neutrophils per µL). This result suggests that the integration of optical imaging, consumer electronics, and data analysis can make non-invasive screening for severe neutropenia accessible to patients. More generally, this work provides a first step towards a long-term objective of non-invasive WBC counting.


Subject(s)
Leukocyte Count/instrumentation , Leukocyte Count/methods , Neutropenia/diagnosis , Adult , Capillaries/diagnostic imaging , Feasibility Studies , Female , Humans , Leukocytes/cytology , Male , Microcirculation , Neutrophils/cytology , Optical Imaging/instrumentation , Optical Imaging/methods
7.
J Med Internet Res ; 20(3): e89, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581092

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and one of the most common forms of movement disorder. Although there is no known cure for PD, existing therapies can provide effective symptomatic relief. However, optimal titration is crucial to avoid adverse effects. Today, decision making for PD management is challenging because it relies on subjective clinical evaluations that require a visit to the clinic. This challenge has motivated recent research initiatives to develop tools that can be used by nonspecialists to assess psychomotor impairment. Among these emerging solutions, we recently reported the neuroQWERTY index, a new digital marker able to detect motor impairment in an early PD cohort through the analysis of the key press and release timing data collected during a controlled in-clinic typing task. OBJECTIVE: The aim of this study was to extend the in-clinic implementation to an at-home implementation by validating the applicability of the neuroQWERTY approach in an uncontrolled at-home setting, using the typing data from subjects' natural interaction with their laptop to enable remote and unobtrusive assessment of PD signs. METHODS: We implemented the data-collection platform and software to enable access and storage of the typing data generated by users while using their computer at home. We recruited a total of 60 participants; of these participants 52 (25 people with Parkinson's and 27 healthy controls) provided enough data to complete the analysis. Finally, to evaluate whether our in-clinic-built algorithm could be used in an uncontrolled at-home setting, we compared its performance on the data collected during the controlled typing task in the clinic and the results of our method using the data passively collected at home. RESULTS: Despite the randomness and sparsity introduced by the uncontrolled setting, our algorithm performed nearly as well in the at-home data (area under the receiver operating characteristic curve [AUC] of 0.76 and sensitivity/specificity of 0.73/0.69) as it did when used to evaluate the in-clinic data (AUC 0.83 and sensitivity/specificity of 0.77/0.72). Moreover, the keystroke metrics presented a strong correlation between the 2 typing settings, which suggests a minimal influence of the in-clinic typing task in users' normal typing. CONCLUSIONS: The finding that an algorithm trained on data from an in-clinic setting has comparable performance with that tested on data collected through naturalistic at-home computer use reinforces the hypothesis that subtle differences in motor function can be detected from typing behavior. This work represents another step toward an objective, user-convenient, and quasi-continuous monitoring tool for PD.


Subject(s)
Motor Activity/genetics , Parkinson Disease/complications , Psychomotor Disorders/etiology , Cohort Studies , Computers , Early Diagnosis , Female , Humans , Longitudinal Studies , Male , Parkinson Disease/pathology , Software
9.
IEEE Trans Biomed Eng ; 64(9): 1994-2002, 2017 09.
Article in English | MEDLINE | ID: mdl-28237917

ABSTRACT

Mobile technology is opening a wide range of opportunities for transforming the standard of care for chronic disorders. Using smartphones as tools for longitudinally tracking symptoms could enable personalization of drug regimens and improve patient monitoring. Parkinson's disease (PD) is an ideal candidate for these tools. At present, evaluation of PD signs requires trained experts to quantify motor impairment in the clinic, limiting the frequency and quality of the information available for understanding the status and progression of the disease. Mobile technology can help clinical decision making by completing the information of motor status between hospital visits. This paper presents an algorithm to detect PD by analyzing the typing activity on smartphones independently of the content of the typed text. We propose a set of touchscreen typing features based on a covariance, skewness, and kurtosis analysis of the timing information of the data to capture PD motor signs. We tested these features, both independently and in a multivariate framework, in a population of 21 PD and 23 control subjects, achieving a sensitivity/specificity of 0.81/0.81 for the best performing feature and 0.73/0.84 for the best multivariate method. The results of the alternating finger-tapping, an established motor test, measured in our cohort are 0.75/0.78. This paper contributes to the development of a home-based, high-compliance, and high-frequency PD motor test by analysis of routine typing on touchscreens.


Subject(s)
Diagnosis, Computer-Assisted/methods , Diagnostic Techniques, Neurological , Mobile Applications , Movement Disorders/diagnosis , Parkinson Disease/diagnosis , Smartphone , Telemedicine/methods , Diagnosis, Computer-Assisted/instrumentation , Female , Humans , Male , Middle Aged , Movement Disorders/etiology , Movement Disorders/physiopathology , Parkinson Disease/complications , Parkinson Disease/physiopathology , Reproducibility of Results , Sensitivity and Specificity , Telemedicine/instrumentation , Word Processing/instrumentation
10.
Ultrasound Med Biol ; 42(7): 1568-73, 2016 07.
Article in English | MEDLINE | ID: mdl-27067281

ABSTRACT

Accurate measurement of very low cerebrospinal fluid (CSF) white blood cell (WBC) concentration is key to the diagnosis of bacterial meningitis, lethal if not promptly treated. Here we show that high frequency ultrasound (HFUS) can detect CSF WBC in vitro in concentrations relevant to meningitis diagnosis with a much finer precision than gold standard manual counting in a Fuchs-Rosenthal chamber. WBC concentrations in a mock CSF model, in the range 0-50 WBC/µL, have been tested and compared to gold standard ground truth. In this range, excellent agreement (Cohen's kappa [κ] = 0.78-90) (Cohen 1960) was observed between HFUS and the gold standard method. The presented experimental set-up allowed us to detect WBC concentrations as low as 2 cells/µL. HFUS shows promise as a low-cost, reliable and automated technology to measure very low CSF WBC concentrations for the diagnosis of early meningitis.


Subject(s)
Leukocytes , Leukocytosis/blood , Ultrasonography/methods , Humans , In Vitro Techniques , Reproducibility of Results
11.
Article in English | MEDLINE | ID: mdl-26738019

ABSTRACT

Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature.


Subject(s)
Capillaries/cytology , Leukocytes/cytology , Nails/blood supply , Algorithms , Humans , Image Processing, Computer-Assisted , Regional Blood Flow , Time Factors
12.
Ultrasound Med Biol ; 38(5): 767-76, 2012 May.
Article in English | MEDLINE | ID: mdl-22425374

ABSTRACT

Significant nonuniformities in the acoustic intensity distribution generated by physiotherapy ultrasound treatment heads are not uncommon, potentially leading to significant localised temperature rises and tissue damage. An acoustic absorber tile containing a thermochromic pigment has been developed to provide rapid quality assurance of physiotherapy ultrasound treatment heads by virtue of a thermochromic colour change, indicating the time-averaged intensity distributions generated by these devices. As a bench-top device, the use of the tile is designed to mimic the nature of the physiotherapeutic application, requiring minimal training. Two designs where thermochromic pigments are added to the various polymeric layers of the tile are presented. Testing has been conducted with two physiotherapy treatment heads of differing performance, one of them notably exhibiting a strong "hot-spot" in localised acoustic time-averaged intensity. Findings show good qualitative agreement with classical hydrophone scans. Techniques are explored for the correction of nonlinearities in the thermochromic relationship, to enhance the accuracy of quantitative assessment.


Subject(s)
Physical Therapy Modalities/instrumentation , Physical Therapy Modalities/standards , Radiometry/instrumentation , Radiometry/standards , Ultrasonic Therapy/instrumentation , Ultrasonic Therapy/standards , Equipment Design , Equipment Failure Analysis , Quality Assurance, Health Care/methods , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...