Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Clin Oncol (R Coll Radiol) ; 36(2): 119-127, 2024 02.
Article in English | MEDLINE | ID: mdl-38042669

ABSTRACT

AIMS: Cardiac disease is a dose-limiting toxicity in non-small cell lung cancer radiotherapy. The dose to the heart base has been associated with poor survival in multiple institutional and clinical trial datasets using unsupervised, voxel-based analysis. Validation has not been undertaken in a cohort with individual patient delineations of the cardiac base or for the endpoint of cardiac events. The purpose of this study was to assess the association of heart base radiation dose with overall survival and the risk of cardiac events with individual heart base contours. MATERIALS AND METHODS: Patients treated between 2015 and 2020 were reviewed for baseline patient, tumour and cardiac details and both cancer and cardiac outcomes as part of the NI-HEART study. Three cardiologists verified cardiac events including atrial fibrillation, heart failure and acute coronary syndrome. Cardiac substructure delineations were completed using a validated deep learning-based autosegmentation tool and a composite cardiac base structure was generated. Cox and Fine-Gray regressions were undertaken for the risk of death and cardiac events. RESULTS: Of 478 eligible patients, most received 55 Gy/20 fractions (96%) without chemotherapy (58%), planned with intensity-modulated radiotherapy (71%). Pre-existing cardiovascular morbidity was common (78% two or more risk factors, 46% one or more established disease). The median follow-up was 21.1 months. Dichotomised at the median, a higher heart base Dmax was associated with poorer survival on Kaplan-Meier analysis (20.2 months versus 28.3 months; hazard ratio 1.40, 95% confidence interval 1.14-1.75, P = 0.0017) and statistical significance was retained in multivariate analyses. Furthermore, heart base Dmax was associated with pooled cardiac events in a multivariate analysis (hazard ratio 1.75, 95% confidence interval 1.03-2.97, P = 0.04). CONCLUSIONS: Heart base Dmax was associated with the rate of death and cardiac events after adjusting for patient, tumour and cardiovascular factors in the NI-HEART study. This validates the findings from previous unsupervised analytical approaches. The heart base could be considered as a potential sub-organ at risk towards reducing radiation cardiotoxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Heart Diseases , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Heart , Radiotherapy, Intensity-Modulated/adverse effects , Heart Diseases/epidemiology , Heart Diseases/etiology , Radiation Dosage
2.
Clin Oncol (R Coll Radiol) ; 34(3): e107-e122, 2022 03.
Article in English | MEDLINE | ID: mdl-34763965

ABSTRACT

Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.


Subject(s)
Lung Neoplasms , Cost-Benefit Analysis , Diagnostic Imaging , Humans , Lung , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Prospective Studies
3.
Clin Oncol (R Coll Radiol) ; 33(11): 705-712, 2021 11.
Article in English | MEDLINE | ID: mdl-34454806

ABSTRACT

Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.


Subject(s)
Radiation Oncology , Radiobiology , Humans , Radiotherapy
4.
Clin Oncol (R Coll Radiol) ; 31(5): 272-282, 2019 05.
Article in English | MEDLINE | ID: mdl-30871751

ABSTRACT

Mouse models are essential tools in cancer research that have been used to understand the genetic basis of tumorigenesis, cancer progression and to test the efficacies of anticancer treatments including radiotherapy. They have played a critical role in our understanding of radiotherapy response in tumours and normal tissues and continue to evolve to better recapitulate the underlying biology of humans. In addition, recent developments in small animal irradiators have significantly improved in vivo irradiation techniques, allowing previously unimaginable experimental approaches to be explored in the laboratory. The combination of contemporary mouse models with small animal irradiators represents a major step forward for the radiobiology field in being able to much more accurately replicate clinical exposure scenarios. As radiobiology studies become ever more sophisticated in reflecting developments in the clinic, it is increasingly important to understand the basis and potential limitations of extrapolating data from mice to humans. This review provides an overview of mouse models and small animal radiotherapy platforms currently being used as advanced radiobiological research tools towards improving the translational power of preclinical studies.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy/methods , Animals , Disease Models, Animal , Humans , Mice
5.
JNMA J Nepal Med Assoc ; 54(201): 1-7, 2016.
Article in English | MEDLINE | ID: mdl-27935904

ABSTRACT

INTRODUCTION: Postgraduate specialization is perceived as essential for success with high competition for enrolment. The reasons how medical students choose their postgraduate specialty are complex. Understanding the factors that influence career choice helps in workforce planning. So, we tried to identify the specialty preferred by postgraduate students and the factors that influenced these choices in a post graduate institution. METHODS: A cross-sectional observational study was conducted in National Academy of Medical Sciences. All the postgraduate students of batch 2011 AD were enrolled for the study. The responses were rated on a five point Likert scale. RESULTS: Significant gender preference was observed in specialties. General Surgery, Internal Medicine and Orthopedics were chosen by male students (P-Values, respectively, 0.001, 0.033 and 0.000) while Obstetrics and Gynecology and Ophthalmology being chosen by female students (P-Values, respectively, 0.000 and 0.006). Significant difference was observed between male and female student responses to the factor - scope in future (P - value 0.042), between married and unmarried students to the factor - workload flexibility (P - value 0.011), students who tried to go abroad versus who didn't, for the factor - Illness of self/family/friend (P - value 0.016), and between those who worked in rural area versus those who didn't, to the factor - Influence of friends/ seniors (P - value 0.038). CONCLUSIONS: Various factors affect the choices for preferred specialty. Policy makers should look at the needs of the nation, and ensure that specialty postgraduate education programs reflect those needs.


Subject(s)
Career Choice , Specialization , Students, Medical/psychology , Cross-Sectional Studies , Female , Health Services Needs and Demand , Humans , Male , Marital Status , Sex Factors , Surveys and Questionnaires
6.
Nanotechnology ; 27(21): 215101, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27080849

ABSTRACT

Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.


Subject(s)
Acetylcysteine/pharmacology , Gold/pharmacology , Metal Nanoparticles/chemistry , Neoplasms/enzymology , Protein Disulfide-Isomerases/metabolism , Radiation-Sensitizing Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Gold/chemistry , Humans , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/radiation effects , Mitochondria/drug effects , Mitochondria/radiation effects , Neoplasms/drug therapy , Neoplasms/radiotherapy , Oxidative Stress/radiation effects
7.
Br J Radiol ; 88(1054): 20150256, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26051659

ABSTRACT

Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.


Subject(s)
Diagnostic Imaging/methods , Metal Nanoparticles/therapeutic use , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/radiotherapy , Humans , Male
8.
Br J Radiol ; 88(1045): 20140634, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25387486

ABSTRACT

Radiation biology is being transformed by the implementation of small animal image-guided precision radiotherapy into pre-clinical research programmes worldwide. We report on the current status and developments of the small animal radiotherapy field, suggest criteria for the design and execution of effective studies and contend that this powerful emerging technology, used in combination with relevant small animal models, holds much promise for translational impact in radiation oncology.


Subject(s)
Biomedical Research , Neoplasms, Experimental/radiotherapy , Radiotherapy, Image-Guided/methods , Animals
9.
Br J Radiol ; 87(1041): 20140134, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24990037

ABSTRACT

A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.


Subject(s)
Gadolinium , Nanoparticles , Neoplasms/drug therapy , Radiation-Sensitizing Agents , Animals , Contrast Media , Humans , Magnetic Resonance Imaging , Mice , Models, Theoretical , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/chemistry , Siloxanes
10.
Br J Radiol ; 87(1036): 20130781, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24472729

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the effect of pre-treatment verification imaging with megavoltage X-rays on cancer and normal cell survival in vitro and to compare the findings with theoretically modelled data. Since the dose received from pre-treatment imaging can be significant, the incorporation of this dose at the planning stage of treatment has been suggested. METHODS: The impact of imaging dose incorporation on cell survival was investigated by clonogenic assay of irradiated DU-145 prostate cancer, H460 non-small-cell lung cancer and AGO-1522b normal tissue fibroblast cells. Clinically relevant imaging-to-treatment times of 7.5 and 15 min were chosen for this study. The theoretical magnitude of the loss of radiobiological efficacy due to sublethal damage repair was investigated using the Lea-Catcheside dose protraction factor model. RESULTS: For the cell lines investigated, the experimental data showed that imaging dose incorporation had no significant impact on cell survival. These findings were in close agreement with theoretical results. CONCLUSION: For the conditions investigated, the results suggest that allowance for the imaging dose at the planning stage of treatment should not adversely affect treatment efficacy. ADVANCES IN KNOWLEDGE: There is a paucity of data in the literature on imaging effects in radiotherapy. This article presents a systematic study of imaging dose effects on cancer and normal cell survival, providing both theoretical and experimental evidence for clinically relevant imaging doses and imaging-to-treatment times. The data provide a firm foundation for further study into this highly relevant area of research.


Subject(s)
Cell Survival/radiation effects , Models, Biological , Neoplasms/radiotherapy , Radiotherapy, High-Energy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Dose-Response Relationship, Radiation , Humans , Lung Neoplasms/radiotherapy , Male , Models, Theoretical , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Computer-Assisted/methods , Time Factors
11.
Clin Oncol (R Coll Radiol) ; 26(3): 142-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24332210

ABSTRACT

AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer. MATERIALS AND METHODS: Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy). RESULTS: 4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans. CONCLUSIONS: 4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Four-Dimensional Computed Tomography/methods , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Four-Dimensional Computed Tomography/adverse effects , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Models, Biological
12.
Clin Oncol (R Coll Radiol) ; 25(10): 586-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23849503

ABSTRACT

Classical radiation biology research has centred on nuclear DNA as the main target of radiation-induced damage. Over the past two decades, this has been challenged by a significant amount of scientific evidence clearly showing radiation-induced cell signalling effects to have important roles in mediating overall radiobiological response. These effects, generally termed radiation-induced bystander effects (RIBEs) have challenged the traditional DNA targeted theory in radiation biology and highlighted an important role for cells not directly traversed by radiation. The multiplicity of experimental systems and exposure conditions in which RIBEs have been observed has hindered precise definitions of these effects. However, RIBEs have recently been classified for different relevant human radiation exposure scenarios in an attempt to clarify their role in vivo. Despite significant research efforts in this area, there is little direct evidence for their role in clinically relevant exposure scenarios. In this review, we explore the clinical relevance of RIBEs from classical experimental approaches through to novel models that have been used to further determine their potential implications in the clinic.


Subject(s)
Bystander Effect/radiation effects , Animals , Dose-Response Relationship, Radiation , Humans , Radiobiology , Signal Transduction/radiation effects
13.
Phys Med Biol ; 58(5): N83-94, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23399781

ABSTRACT

Flattening filter free (FFF) linear accelerators allow for an increase in instantaneous dose-rate of the x-ray pulses by a factor of 2-6 over the conventional flattened output. As a result, radiobiological investigations are being carried out to determine the effect of these higher dose-rates on cell response. The studies reported thus far have presented conflicting results, highlighting the need for further investigation. To determine the radiobiological impact of the increased dose-rates from FFF exposures a Varian Truebeam medical linear accelerator was used to irradiate two human cancer cell lines in vitro, DU-145 prostate and H460 non-small cell lung, with both flattened and FFF 6 MV beams. The fluence profile of the FFF beam was modified using a custom-designed Nylon compensator to produce a similar dose profile to the flattened beam (6X) at the cell surface but at a higher instantaneous dose-rate. For both cell lines there appeared to be no significant change in cell survival. Curve fitting coefficients for DU145 cells irradiated with constant average dose-rates were 6X: α = 0.09 ± 0.03, ß = 0.03 ± 0.01 and 6FFF: α = 0.14 ± 0.13, ß = 0.03 ± 0.02 with a significance of p = 0.75. For H460 cells irradiated with the same instantaneous dose-rate but different average dose-rate the fit coefficients were 6FFF (low dose-rate): α = 0.21 ± 0.11, 0.07 ± 0.02 and 6FFF (high dose-rate): α = 0.21 ± 0.16, 0.07 ± 0.03, with p = 0.79. The results indicate that collective damage behaviour does not occur at the instantaneous dose-rates investigated here and that the use of either modality should result in the same clinical outcome, however this will require further validation in vivo.


Subject(s)
Radiobiology , Radiotherapy, Computer-Assisted/methods , Cell Line, Tumor , Cell Survival/radiation effects , Humans , Male , Radiometry , Radiotherapy Dosage , Time Factors
14.
Vet Microbiol ; 162(1): 228-31, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23123176

ABSTRACT

The purpose of this study was to describe clinical, hematological and fecal PCR results from 161 horses involved in outbreaks associated with ECoV. The outbreaks happened at four separate boarding facilities between November 2011 and April 2012 in the States of CA, TX, WI and MA. Following the molecular detection of ECoV in the feces from the initial index cases, the remaining herdmates were closely observed for the development of clinical signs. Fecal samples were collected from sick and healthy horses for the PCR detection of ECoV. All four outbreaks involved primarily adult horses. Fifty-nine horses developed clinical signs with 12-16 sick horses per outbreak. The main clinical signs reported were anorexia, lethargy and fever. Four horses from 3 different outbreaks were euthanized or died due to rapid progression of clinical signs. The cause of death could not be determined with necropsy evaluation in 2 horses, while septicemia secondary to gastrointestinal translocation was suspected in 2 horses. Blood work was available from 10 horses with clinical disease and common hematological abnormalities were leucopenia due to neutropenia and/or lymphopenia. Feces were available for ECoV testing by real-time PCR from 44 and 96 sick and healthy horses, respectively. 38/44 (86%) horses with abnormal clinical signs tested PCR positive for ECoV, while 89/96 (93%) healthy horses tested PCR negative for ECoV. The overall agreement between clinical status and PCR detection of ECoV was 91%. The study results suggest that ECoV is associated with self-limiting clinical and hematological abnormalities in adult horses.


Subject(s)
Communicable Diseases, Emerging/veterinary , Coronavirus Infections/veterinary , Coronavirus/isolation & purification , Disease Outbreaks/veterinary , Horse Diseases/epidemiology , Animals , Case-Control Studies , Communicable Diseases, Emerging/blood , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Feces/virology , Horse Diseases/blood , Horse Diseases/virology , Horses , Real-Time Polymerase Chain Reaction/veterinary
15.
Radiat Res ; 177(1): 44-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22029841

ABSTRACT

In the present study survival responses were determined in cells with differing radiosensitivity, specifically primary fibroblast (AG0-1522B), human breast cancer (MDA-MB-231), human prostate cancer (DU-145) and human glioma (T98G) cells, after exposure to modulated radiation fields delivered by shielding 50% of the tissue culture flask. A significant decrease (P < 0.05) in cell survival was observed in the shielded area, outside the primary treatment field (out-of-field), that was lower than predicted when compared to uniform exposures fitted to the linear-quadratic model. Cellular radiosensitivity was demonstrated to be an important factor in the level of response for both the in- and out-of-field regions. These responses were shown to be dependent on secretion-mediated intercellular communication, because inhibition of cellular secreted factors between the in- and out-of-field regions abrogated the response. Out-of-field cell survival was shown to increase after pretreatment of cells with agents known to inhibit factors involved in mediating radiation-induced bystander signaling (aminoguanidine, DMSO or cPTIO). These data illustrate a significant decrease in survival out-of-field, dependent upon intercellular communication, in several cell lines with varying radiosensitivity after exposure to a modulated radiation field. This study provides further evidence for the importance of intercellular signaling in modulated exposures, where dose gradients are present, and may inform the refinement of established radiobiological models to facilitate the optimization of advanced radiotherapy treatment plans.


Subject(s)
Cell Survival/radiation effects , Cell Communication/radiation effects , Cell Line, Tumor , Humans , Radiation Tolerance , X-Rays
16.
Educ Health (Abingdon) ; 24(3): 539, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22267349

ABSTRACT

CONTEXT: Experts suggest that distance learning continuing medical education (CME) is only effective when there is the opportunity for two-way discussion and reflection. The value of on-line mentoring has been mainly studied in the West. OBJECTIVES: We examined the benefits and practical implications of providing mentors for distance learning CME in a low technology setting. METHODS: We conducted a randomized controlled trial with qualitative and quantitative analysis of the impact of mentoring on completion of CME and quality of reflective learning. RESULTS: Twenty-six of 64 doctors completed all four CME modules. Non-completers were interviewed by telephone. Odds ratio analysis suggested that mentored doctors were three times more likely to complete their CME; however, this did not reach statistical significance (p = 0.07, 95% CI 0.89-10.57). Being in rural practice (p = 0.05) and younger in age (p = 0.005) were significantly associated with completion of CME. Mentored doctors seemed to show a higher quality of reflection on learning. Contact between mentors and mentees was difficult. Both mentors and mentees felt that optimal use of the system was not made. DISCUSSION: Despite mentors' perceptions that they had little impact, mentored doctors did appear to be more likely to complete CME. Work is needed to increase the quality of interpersonal and educational interaction between mentors and mentees.


Subject(s)
Education, Distance/methods , Education, Medical, Continuing/methods , Mentors , Rural Health Services , Rural Population , Teaching/methods , Confidence Intervals , Focus Groups , General Practitioners , Humans , Odds Ratio , Online Systems , Qualitative Research , Statistics as Topic , Surveys and Questionnaires
17.
Nanotechnology ; 21(29): 295101, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20601762

ABSTRACT

High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 microg ml(-1). This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy.


Subject(s)
Gold/pharmacology , Metal Nanoparticles/therapeutic use , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Growth Processes/drug effects , Cell Growth Processes/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Breaks, Double-Stranded , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flow Cytometry , Gold/administration & dosage , Gold/pharmacokinetics , Humans , Metal Nanoparticles/chemistry , Nonlinear Dynamics , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics
18.
JNMA J Nepal Med Assoc ; 49(179): 185-90, 2010.
Article in English | MEDLINE | ID: mdl-22049820

ABSTRACT

INTRODUCTION: This is a qualitative study, to generate a framework for a core curriculum in General Practice in the undergraduate setting, designed specifically for Nepal. METHODS: A Delphi process was used to involve representatives from the GP faculty in Institute of Medicine, BP Koirala institute BPKIHS, Patan Hospital/National Academy Medical Sciences and Tansen mission hospital. The Delphi involves getting input from an identified group of experts and progressively feeding back the results from each round of enquiry so that subsequent views are influenced until a point of convergence is reached. In effect the Delphi not only analyses problems and identifies solutions, but can begin the process of commitment to change. RESULTS: A prioritized list of the key outcomes for an undergraduate GP curriculum was developed and a broad list of knowledge, skills and attitudes were defined. A balance was observed between the need to train doctors who are skilled in communication, who have compassion for their patients, who are also required to be excellent rational clinicians able to respond to emergency situations. There was also the need for doctors to be competent not just in individual clinical care, but in the care of communities. CONCLUSIONS: General Practice, as a core component of primary care, should be an obligatory part of every undergraduate medical curriculum. This Delphi process has produced an important framework for a national undergraduate curriculum in General Practice, designed specifically for Nepal.


Subject(s)
Curriculum , Education, Medical, Undergraduate/organization & administration , General Practice/education , Delphi Technique , Humans , Needs Assessment , Nepal , Surveys and Questionnaires
20.
Phys Med Biol ; 54(15): 4705-21, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19590119

ABSTRACT

The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.


Subject(s)
DNA Breaks/radiation effects , DNA/chemistry , DNA/genetics , Gold/chemistry , Hydrogen , Plasmids/genetics , Buffers , DNA Breaks/drug effects , Dose-Response Relationship, Radiation , Electrons , Gold/pharmacology , Kinetics , Metal Nanoparticles/chemistry , Models, Biological , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...