Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 29(14): 2661-2675, 2020 07.
Article in English | MEDLINE | ID: mdl-32510730

ABSTRACT

The evolution of resistance to drugs and pesticides poses a major threat to human health and food security. Neonicotinoids are highly effective insecticides used to control agricultural pests. They target the insect nicotinic acetylcholine receptor and mutations of the receptor that confer resistance have been slow to develop, with only one field-evolved mutation being reported to date. This is an arginine-to-threonine substitution at position 81 of the nAChR_ß1 subunit in neonicotinoid-resistant aphids. To validate the role of R81T in neonicotinoid resistance and to test whether it may confer any significant fitness costs to insects, CRISPR/Cas9 was used to introduce an analogous mutation in the genome of Drosophila melanogaster. Flies carrying R81T showed an increased tolerance (resistance) to neonicotinoid insecticides, accompanied by a significant reduction in fitness. In comparison, flies carrying a deletion of the whole nAChR_α6 subunit, the target site of spinosyns, showed an increased tolerance to this class of insecticides but presented almost no fitness deficits.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genetic Fitness , Insecticide Resistance , Neonicotinoids , Receptors, Nicotinic/genetics , Animals , Insecticide Resistance/genetics , Insecticides/toxicity , Mutation , Neonicotinoids/toxicity
2.
Cancer Res ; 79(20): 5382-5393, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31405846

ABSTRACT

Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Genes, myc , Neoplasm Metastasis/drug therapy , Neuroblastoma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Benzamides/therapeutic use , Child , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Disease Models, Animal , Disease Progression , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Janus Kinases/antagonists & inhibitors , Magnetic Resonance Imaging , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein/genetics , Neoplasm Metastasis/diagnostic imaging , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neuroblastoma/diagnostic imaging , Neuroblastoma/genetics , Neuroblastoma/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Signal Transduction , Synteny , Tumor Burden , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...