Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 755, 2018.
Article in English | MEDLINE | ID: mdl-29740408

ABSTRACT

Organohalide respiration (OHR) is the energy metabolism of anaerobic bacteria able to use halogenated organic compounds as terminal electron acceptors. While the terminal enzymes in OHR, so-called reductive dehalogenases, are well-characterized, the identity of proteins potentially involved in electron transfer to the terminal enzymes remains elusive. Among the accessory genes identified in OHR gene clusters, the C subunit (rdhC) could well code for the missing redox protein between the quinol pool and the reductive dehalogenase, although it was initially proposed to act as transcriptional regulator. RdhC sequences are characterized by the presence of multiple transmembrane segments, a flavin mononucleotide (FMN) binding motif and two conserved CX3CP motifs. Based on these features, we propose a curated selection of RdhC proteins identified in general sequence databases. Beside the Firmicutes from which RdhC sequences were initially identified, the identified sequences belong to three additional phyla, the Chloroflexi, the Proteobacteria, and the Bacteriodetes. The diversity of RdhC sequences mostly respects the phylogenetic distribution, suggesting that rdhC genes emerged relatively early in the evolution of the OHR metabolism. PceC, the C subunit of the tetrachloroethene (PCE) reductive dehalogenase is encoded by the conserved pceABCT gene cluster identified in Dehalobacter restrictus PER-K23 and in several strains of Desulfitobacterium hafniense. Surfaceome analysis of D. restrictus cells confirmed the predicted topology of the FMN-binding domain (FBD) of PceC that is the exocytoplasmic face of the membrane. Starting from inclusion bodies of a recombinant FBD protein, strategies for successful assembly of the FMN cofactor and refolding were achieved with the use of the flavin-trafficking protein from D. hafniense TCE1. Mass spectrometry analysis and site-directed mutagenesis of rFBD revealed that threonine-168 of PceC is binding FMN covalently. Our results suggest that PceC, and more generally RdhC proteins, may play a role in electron transfer in the metabolism of OHR.

2.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29518190

ABSTRACT

Two anaerobic bacterial consortia, each harboring a distinct Sulfurospirillum population, were derived from a 10 year old consortium, SL2, previously characterized for the stepwise dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (cis-DCE) via accumulation of trichloroethene (TCE). Population SL2-1 dechlorinated PCE to TCE exclusively, while SL2-2 produced cis-DCE from PCE without substantial TCE accumulation. The reasons explaining the long-term coexistence of the populations were investigated. Genome sequencing revealed a novel Sulfurospirillum species, designated 'Candidatus Sulfurospirillum diekertiae', whose genome differed significantly from other Sulfurospirillum spp. (78%-83% ANI). Genome-wise, SL2-1 and SL2-2 populations are almost identical, but differences in their tetrachloroethene reductive dehalogenase sequences explain the distinct dechlorination patterns. An extended series of batch cultures were performed at PCE concentrations of 2-200 µM. A model was developed to determine their dechlorination kinetic parameters. The affinity constant and maximal growth rate differ between the populations: the affinity is 6- to 8-fold higher and the growth rate 5-fold lower for SL2-1 than SL2-2. Mixed cultivation of the enriched populations at 6 and 30 µM PCE showed that a low PCE concentration could be the driving force for both functional diversity of reductive dehalogenases and niche specialization of organohalide-respiring bacteria with overlapping substrate ranges.


Subject(s)
Campylobacteraceae/metabolism , Tetrachloroethylene/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Campylobacteraceae/chemistry , Campylobacteraceae/classification , Campylobacteraceae/genetics , Genome, Bacterial , Genomics , Halogenation , Kinetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Trichloroethylene/metabolism
3.
Environ Sci Technol ; 48(16): 9179-86, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25000152

ABSTRACT

Dual isotope slopes are increasingly used to identify transformation pathways of contaminants. We investigated if reductive dechlorination of tetrachloroethene (PCE) by consortia containing bacteria with different reductive dehalogenases (rdhA) genes can lead to variable dual C-Cl isotope slopes and if different slopes also occur in the field. Two bacterial enrichments harboring Sulfurospirillum spp. but different rdhA genes yielded two distinct δ(13)C to δ(37)Cl slopes of 2.7 ± 0.3 and 0.7 ± 0.2 despite a high similarity in gene sequences. This suggests that PCE reductive dechlorination could be catalyzed according to at least two distinct reaction mechanisms or that rate-limiting steps might vary. At two field sites, two distinct dual isotope slopes of 0.7 ± 0.3 and 3.5 ± 1.6 were obtained, each of which fits one of the laboratory slopes within the range of uncertainty. This study hence provides additional insight into multiple reaction mechanisms underlying PCE reductive dechlorination. It also demonstrates that caution is necessary if a dual isotope approach is used to differentiate between transformation pathways of chlorinated ethenes.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Epsilonproteobacteria/metabolism , Tetrachloroethylene/metabolism , Chlorine/metabolism , Genes, Bacterial , Oxidation-Reduction
4.
Appl Environ Microbiol ; 79(22): 6941-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995945

ABSTRACT

Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed.


Subject(s)
Bacterial Proteins/metabolism , Epsilonproteobacteria/genetics , Oxidoreductases/metabolism , Tetrachloroethylene/metabolism , Bacterial Proteins/genetics , Base Sequence , DNA, Bacterial/genetics , Epsilonproteobacteria/enzymology , Genes, Bacterial , Genotype , Halogenation , Molecular Sequence Data , Operon/genetics , Oxidoreductases/genetics , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...