Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 112(3): 637-644, 2016 12.
Article in English | MEDLINE | ID: mdl-27496871

ABSTRACT

AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 µM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.


Subject(s)
Heart/innervation , Natriuretic Peptide, C-Type/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Sympathetic Nervous System/metabolism , Synaptic Transmission , Animals , Arterial Pressure , Calcium Signaling , Genetic Predisposition to Disease , Heart Rate , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Norepinephrine/metabolism , Phenotype , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, Atrial Natriuretic Factor/genetics , Stellate Ganglion/metabolism , Sympathetic Nervous System/physiopathology , Systole , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism , Tachycardia, Ventricular/physiopathology , Time Factors , Tyrosine 3-Monooxygenase/metabolism , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Function, Left
2.
Front Mol Neurosci ; 7: 95, 2014.
Article in English | MEDLINE | ID: mdl-25520616

ABSTRACT

The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.

3.
PLoS One ; 8(6): e66048, 2013.
Article in English | MEDLINE | ID: mdl-23805197

ABSTRACT

Coordinated bone growth is controlled by numerous mechanisms which are only partially understood because of the involvement of many hormones and local regulators. The C-type Natriuretic Peptide (CNP), encoded by NPPC gene located on chromosome 2q37.1, is a molecule that regulates endochondral ossification of the cartilaginous growth plate and influences longitudinal bone growth. Two independent studies have described three patients with a Marfan-like phenotype presenting a de novo balanced translocation involving the same chromosomal region 2q37.1 and overexpression of NPPC. We report on two partially overlapping interstitial 2q37 deletions identified by array CGH. The two patients showed opposite phenotypes characterized by short stature and skeletal overgrowth, respectively. The patient with short stature presented a 2q37 deletion causing the loss of one copy of the NPPC gene and the truncation of the DIS3L2 gene with normal CNP plasma concentration. The deletion identified in the patient with a Marfan-like phenotype interrupted the DIS3L2 gene without involving the NPPC gene. In addition, a strongly elevated CNP plasma concentration was found in this patient. A possible role of NPPC as causative of the two opposite phenotypes is discussed in this study.


Subject(s)
Genetic Association Studies , Natriuretic Peptide, C-Type/blood , Bone Development , Brain/diagnostic imaging , Child , Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Comparative Genomic Hybridization , Cytogenetic Analysis , Exoribonucleases/genetics , Female , Gene Expression , Humans , In Situ Hybridization, Fluorescence , Magnetic Resonance Imaging , Male , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/metabolism , Phenotype , RNA, Messenger/metabolism
4.
PLoS One ; 8(5): e64243, 2013.
Article in English | MEDLINE | ID: mdl-23717576

ABSTRACT

Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients with dominantly transmitted skin disease.


Subject(s)
Amino Acid Substitution , Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/genetics , Amino Acid Sequence , Animals , Base Sequence , Collagen Type VII/metabolism , DNA Mutational Analysis , Disease Models, Animal , Epidermolysis Bullosa Dystrophica/metabolism , Gene Dosage , Gene Expression , Genetic Association Studies , Humans , Molecular Sequence Data , Protein Stability , Rats , Skin/pathology
5.
Regul Pept ; 161(1-3): 51-7, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20079378

ABSTRACT

Accumulating evidence indicates that Visinin-like protein-1 (VILIP-1), a member of the family of neuronal calcium sensor proteins (NCS), modulates a variety of processes in extra-neuronal tissues. In this study, we describe VILIP-1 expression in the human heart, rat cardiomyocytes, and H9c2 cells, and demonstrate that VILIP-1 regulates the cell surface localization of natriuretic peptide receptor B (NPR-B). In preparations from failing hearts, we observed VILIP-1 downregulation and reduced NPR-B signalling. In conclusion, VILIP-1 deficiency may be responsible for the reduced efficiency of the natriuretic peptide system in cardiac hypertrophy and heart failure and may therefore serve as pharmacological target.


Subject(s)
Myocytes, Cardiac/metabolism , Neurocalcin/physiology , Receptors, Atrial Natriuretic Factor/metabolism , Animals , Blotting, Western , Cell Line , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Hemodynamics , Humans , Immunohistochemistry , Myocardial Infarction/metabolism , Myocardium/metabolism , Neurocalcin/deficiency , Neurocalcin/genetics , Neurocalcin/metabolism , Polymerase Chain Reaction , RNA, Small Interfering/genetics , RNA, Small Interfering/physiology , Rats , Rats, Sprague-Dawley , Receptors, Atrial Natriuretic Factor/genetics
6.
Hum Mol Genet ; 18(2): 267-77, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18945719

ABSTRACT

Natriuretic peptides (NPs) comprise a family of structurally related but genetically distinct hormones that regulate a variety of physiological processes such as cardiac growth, blood pressure, axonal pathfinding and endochondral ossification leading to the formation of vertebrae and long bones. The biological actions of NPs are mediated by natriuretic peptide receptors (NPRs) A, B and C that are located on the cell surface. Mutations in NPR-B have been shown to cause acromesomelic dysplasia-type Maroteaux (AMDM), a growth disorder in humans and severe dwarfism in mice. We hypothesized that missense mutations of NPR-B associated with AMDM primarily affect NPR-B function by the arrest of receptor trafficking at the endoplasmic reticulum (ER), due to conformational change, rather than an impairment of ligand binding, transmission of signal through the membrane or catalytic activity. Twelve missense mutations found in AMDM patients and cn/cn mice were generated by site-directed mutagenesis and transiently overexpressed in HeLa cells. Confocal microscopy revealed that 11 out of 12 mutants were retained in the ER. Determination of the ligand-dependent cGMP response confirmed that ER-retained NPR-B mutants are non-functional. Meanwhile, the only cell surface-targeted NPR-B missense mutant (D176E) displayed greatly reduced enzymatic activity due to impaired ligand binding. Thus, in the majority of cases of AMDM associated with missense NPR-B mutation, disease appears to result from defects in the targeting of the ER receptor to the plasma membrane.


Subject(s)
Mucopolysaccharidosis VI/metabolism , Mutation, Missense , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Mucopolysaccharidosis VI/genetics , Protein Transport
7.
Mol Genet Metab ; 95(1-2): 74-80, 2008.
Article in English | MEDLINE | ID: mdl-18678517

ABSTRACT

Familial Dilated Cardiomyopathy (FDCM) is caused by mutations in genes encoding myocardial force transduction proteins. Desmoglein-2 (DSG2) and Desmocollin-2 (DSC2) provide cellular adhesion and force transduction by cell-to-cell anchorage. To test whether perturbations of DSG2 or DSC2 exhibit a pathogenic impact on DCM pathogenesis, we sequenced both genes in 73 patients with FDCM and assessed prevalence of missense variations in matched control cohorts. We detected two missense variations in DSG2 (V55M and V919G) which were absent in 360 control alleles. Surprisingly, both variants were previously reported in patients with arrhythmogenic right ventricular cardiomyopathy. Yet, in the present study only the DSG2-V55M variant showed segregation with DCM in a family pedigree. Subsequent, analysis of 538 patients with idiopathic DCM and 617 consecutive control individuals resulted in identification of thirteen DSG2-V55M carriers with DCM, whereas only three control subjects harbored the variant. DSG2 immunostaining revealed pale structures of the intercalated disc in myocardium of one unique homozygous DSG2-V55M carrier. Furthermore, myocardial desmosomal structures were significantly shortened when compared to DCM myocardium negative for DSG2-V55M. Thus, our study identified the DSG2-V55M polymorphism as a novel risk variant for DCM associated with shortened desmosomes of the cardiac intercalated disc.


Subject(s)
Cardiomyopathy, Dilated/genetics , Desmoglein 2/genetics , Genetic Predisposition to Disease , Mutation, Missense , Adolescent , Adult , Aged , Amino Acid Sequence , Cardiomyopathy, Dilated/metabolism , Case-Control Studies , Cells, Cultured , Child , Child, Preschool , Cohort Studies , Desmoglein 2/chemistry , Desmoglein 2/metabolism , Desmosomes/chemistry , Desmosomes/metabolism , Desmosomes/ultrastructure , Female , Germany , Humans , Infant , Male , Middle Aged , Molecular Sequence Data , Myocardium/chemistry , Myocardium/metabolism , Myocardium/ultrastructure , Pedigree , Phenotype , Sequence Alignment
8.
J Am Soc Hypertens ; 2(6): 418-24, 2008.
Article in English | MEDLINE | ID: mdl-20409925

ABSTRACT

The Mas gene codes for an angiotensin (1-7) receptor. There is accumulating evidence that Mas is involved in vascular homeostasis. We have recently backcrossed Mas-knockout mice to two different genetic backgrounds, C57Bl/6 and FVB/N. FVB/NMas-deficient mice exhibited elevation in blood pressure (BP) and impaired endothelial function. In the present study, we aimed to address the question whether this phenotype is strain-specific. Therefore, we evaluated endothelial function in C57Bl/6Mas-deficient mice. Similar to FVB/NMas-knockout animals, Mas-deficiency in C57Bl/6 mice leads to endothelial dysfunction evaluated by the acute BP effect of acetylcholine administration. Measurements of nitric oxide (NO) and reactive oxygen species (ROS) and the systems involved in their metabolism revealed an imbalance between these vasoactive factors in C57Bl/6Mas-knockout mice, which may explain the impairment of endothelial function in these animals. However, endothelial dysfunction was less prominent in Mas-deficient mice on a C57Bl/6 background compared to FVB/N. Moreover, C57Bl/6Mas-deficient mice remained normotensive while FVB/N-based animals exhibited elevated BP. The impairment of endothelium-dependent vasodilatory response to acetylcholine in two different mouse strains with Mas deficiency indicates a key role of Mas in endothelial function by its effects on the generation and metabolism of NO and ROS.

9.
J Cell Biol ; 179(2): 331-40, 2007 Oct 22.
Article in English | MEDLINE | ID: mdl-17954614

ABSTRACT

Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord.


Subject(s)
Axons/enzymology , Guanylate Cyclase/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Spinal Cord/enzymology , Animals , Cyclic GMP-Dependent Protein Kinases/deficiency , Cyclic GMP-Dependent Protein Kinases/metabolism , Electrophysiology , Enzyme Activation , Ganglia, Spinal/cytology , Ganglia, Spinal/embryology , Ganglia, Spinal/enzymology , Mice , Mice, Mutant Strains , Models, Biological , Mutation/genetics , Nociceptors/metabolism , Proprioception , Spinal Cord/cytology , Spinal Nerve Roots/cytology , Spinal Nerve Roots/enzymology
10.
J Mol Med (Berl) ; 85(8): 797-810, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17429599

ABSTRACT

Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.


Subject(s)
Cardiomegaly/physiopathology , Cardiovascular Physiological Phenomena , Guanylate Cyclase/physiology , Receptors, Atrial Natriuretic Factor/physiology , Signal Transduction , Animals , Cardiomegaly/metabolism , Cardiovascular System/metabolism , Guanylate Cyclase/metabolism , Humans , Models, Biological , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/physiology , Receptors, Atrial Natriuretic Factor/metabolism
11.
Hum Mutat ; 28(7): 724-31, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17373680

ABSTRACT

Longitudinal bone growth is determined by the process of endochondral ossification in the cartilaginous growth plate, which is located at both ends of vertebrae and long bones and involves many systemic hormones and local regulators. We report the molecular characterization of a de novo balanced t(2;7)(q37.1;q21.3) translocation in a young female with Marfanoid habitus and skeletal anomalies. The translocation was characterized by fluorescence in situ hybridization (FISH), checked for other abnormalities by array-comparative genomic hybridization (CGH), and finally, the breakpoints were cloned, sequenced, and compared. Biochemical dosage was applied to study the possible mechanisms that may cause the proposita's phenotype. The breakpoint on chromosome 2 disrupts the hypothetical gene MGC42174 (HUGO-approved symbol DIS3L2) and is located in the proximity of the NPPC gene coding for C-type natriuretic peptide (CNP), a molecule that regulates endochondral bone growth. CNP plasma concentration was doubled in the proband compared to five normal controls, while NPPC was substantially overexpressed in her fibroblasts. A transgenic mouse generated to target NPPC overexpression in bone showed a phenotype highly reminiscent of the patient's phenotype. The breakpoint on chromosome 7 is localized proximally at about 75 kb from the COL1A2 gene. The COL1A2 allele on the derivative chromosome was strongly underexpressed in fibroblasts, but total collagen was not significantly different from controls. Several evidences support the conclusion that the proband's abnormal phenotype is associated with C-type natriuretic peptide overexpression.


Subject(s)
Bone Development/genetics , Bone and Bones/abnormalities , Chromosomes, Human, Pair 2 , Chromosomes, Human, Pair 7 , Natriuretic Peptide, C-Type/metabolism , Translocation, Genetic , Adolescent , Animals , Base Sequence , Collagen/genetics , Collagen Type I , DNA Primers , Female , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Mice , Mice, Transgenic , Natriuretic Peptide, C-Type/genetics
12.
Proc Natl Acad Sci U S A ; 103(12): 4735-40, 2006 Mar 21.
Article in English | MEDLINE | ID: mdl-16537417

ABSTRACT

Natriuretic peptides (NP) mediate their effects by activating membrane-bound guanylyl cyclase-coupled receptors A (NPR-A) or B (NPR-B). Whereas the pathophysiological role of NPR-A has been widely studied, only limited knowledge on the cardiovascular function of NPR-B is available. In vitro studies suggest antiproliferative and antihypertrophic actions of the NPR-B ligand C-type NP (CNP). Because of the lack of a specific pharmacological inhibitor, these effects could not clearly be attributed to impaired NPR-B signaling. Recently, gene deletion revealed a predominant role of NPR-B in endochondral ossification and development of female reproductive organs. However, morphological abnormalities and premature death of NPR-B-deficient mice preclude detailed cardiovascular phenotyping. In the present study, a dominant-negative mutant (NPR-BDeltaKC) was used to characterize CNP-dependent NPR-B signaling in vitro and in transgenic rats. Here we demonstrate that reduced CNP- but not atrial NP-dependent cGMP response attenuates antihypertrophic potency of CNP in vitro. In transgenic rats, NPR-BDeltaKC expression selectively reduced NPR-B but not NPR-A signaling. NPR-BDeltaKC transgenic rats display progressive, blood pressure-independent cardiac hypertrophy and elevated heart rate. The hypertrophic phenotype is further enhanced in chronic volume overload-induced congestive heart failure. Thus, this study provides evidence linking NPR-B signaling to the control of cardiac growth.


Subject(s)
Genes, Dominant , Guanylate Cyclase/genetics , Hypertrophy, Left Ventricular/physiopathology , Receptors, Atrial Natriuretic Factor/genetics , Animals , Animals, Genetically Modified , Blood Pressure/genetics , Bone Development/genetics , Cyclic GMP/metabolism , Heart Rate/genetics , Heart Ventricles/drug effects , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Kidney/physiology , Mutation , Natriuretic Peptide, C-Type/pharmacology , Rats , Sequence Deletion
13.
Eur J Heart Fail ; 6(7): 845-51, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15556045

ABSTRACT

BACKGROUND: The presence of apoptotic cell death in cardiac myocytes is now well established and the contribution of apoptosis for the development of heart failure has been suggested. However, the mechanism responsible for the induction of apoptosis remains unclear. The present study was designed to investigate the involvement of Fas and caspase 3 in the transition from pressure overload-induced left ventricular hypertrophy (LVH) to left ventricular dysfunction (LVD). METHODS: Pressure overload induced LVH (10 days) and LVD (30 days) were induced by thoracic aortic banding. Changes in apoptosis-related genes were studied in rats with thoracic aortic banding. After 10 and 30 days, cardiac Fas mRNA expression was measured by RT-PCR. The mRNA expression of caspase 3 was detected by RNase protection assay. The activity of caspase 3 was measured by fluorometric assay. Protein levels of caspase 3 were measured by Western blot. RESULTS: Rats with aortic banding had increased heart/body weight ratios after 10 and 30 days, compared to controls. Central venous pressure and lung weights were increased, left ventricular contractility was significantly impaired only in rats after 30 days of aortic banding, indicating LVD. Caspase 3 mRNA expression (7.1+/-0.1 vs. 2.8+/-0.4, P<0.05), caspase 3 activity (1418+/-181 vs. 849+/-154 AU, P<0.05) as well as caspase 3 protein levels were increased in rats with LVD but not with LVH. Similarly, Fas mRNA was increased in rats with LVD. CONCLUSIONS: The activation of Fas and caspase 3 only after 30 days of aortic banding suggests that induction of these pathways may be involved in pressure overload-induced LVD.


Subject(s)
Blood Pressure , Caspases/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , fas Receptor/metabolism , Animals , Aorta, Thoracic/metabolism , Apoptosis , Atrial Natriuretic Factor/metabolism , Biomarkers/metabolism , Blotting, Western , Caspase 3 , Disease Models, Animal , Heart Failure/metabolism , Heart Failure/physiopathology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Male , Models, Cardiovascular , Myocardial Contraction , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Stroke Volume , Up-Regulation , Ventricular Dysfunction, Left/enzymology
14.
Am J Physiol Heart Circ Physiol ; 287(4): H1516-21, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15155264

ABSTRACT

Stored cardiac pro-atrial natriuretic peptide (pro-ANP) is converted to ANP and released upon stretch from the atria into the circulation. Corin is a serin protease with pro-ANP-converting properties and may be the rate-limiting enzyme in ANP release. This study was aimed to clone and sequence corin in the rat and to analyze corin mRNA expression in heart failure when ANP release upon stretch is blunted. Full-length cDNA of rat corin was obtained from atrial RNA by RT-PCR and sequenced. Tissue distribution as well as regulation of corin mRNA expression in the atria were determined by RT-PCR and RNase protection assay. Heart failure was induced by an infrarenal aortocaval shunt. Stretch was applied to the left atrium in a working heart modus, and ANP was measured in the perfusates. The sequence of rat corin cDNA was found to be 93.6% homologous to mouse corin cDNA. Corin mRNA was expressed almost exclusively in the heart with highest concentrations in both atria. The aortocaval shunt led to cardiac hypertrophy and heart failure. Stretch-induced ANP release was blunted in shunt animals (control 1,195 +/- 197 fmol.min(-1).g(-1); shunt: 639 +/- 99 fmol.min(-1).g(-1), P < 0.05). Corin mRNA expression was decreased in both atria in shunt animals [right atrium: control 0.638 +/- 0.004 arbitrary units (AU), shunt 0.566 +/- 0.014 AU, P < 0.001; left atrium: control 0.564 +/- 0.009 AU, shunt 0.464 +/- 0.009 AU, P < 0.001]. Downregulation of atrial corin mRNA expression may be a novel mechanism for the blunted ANP release in heart failure.


Subject(s)
Heart Failure/physiopathology , Serine Endopeptidases/genetics , Amino Acid Sequence , Animals , Atrial Natriuretic Factor/metabolism , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Central Venous Pressure , Cloning, Molecular , Gene Expression , Heart Failure/metabolism , Heart Failure/pathology , Male , Molecular Sequence Data , Myocardium/metabolism , Myocardium/pathology , Organ Size , RNA, Messenger/analysis , Rats , Rats, Wistar , Ventricular Pressure
15.
Hypertension ; 43(2): 460-5, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14691198

ABSTRACT

Natriuretic peptides mediate their physiologic effects through activation of membrane-bound, guanylyl cyclase-coupled receptors (NPRs). Receptor dimerization is an important feature of signal transduction. This study was aimed at characterizing structurally important residues of the extracellular ligand-binding domain of NPR-B for receptor dimerization and cGMP generation. Deletion mutagenesis was used to replace cysteine residues at positions 53 (C53S), 417 (C417S), and 426 (C426S) by serine. Receptor expression, dimerization, whole-cell cGMP response, and guanylyl cyclase activity of membrane fractions were determined in stably transfected COS-7 cells. C53S, C417S, and C426S mutants were expressed and found to form disulfide-bridged covalent dimers. In contrast to NPR-B and C53S, C417S and C426S mutants displayed constitutive activity in whole cells (C417S, 146+/-12%, P<0.01; C426S, 153+/-7% of ligand-independent NPR-B cGMP generation, P<0.01). The cGMP response of C417S and C426S mutants in whole cells was dose dependent and approximately 4 times lower than that in NPR-B, whereas it was blunted in C53S-transfected cells (1 micromol/L CNP, NPR-B 2868+/-436%; C53S, 206+/-16% of control, P<0.001 vs NPR-B, C417S, and C426S). Guanylyl cyclase assay in transfected cells confirmed the constitutive activity of C417S and C426S mutants. These data suggest that receptor dimerization by covalent disulfide bridges alters ligand-independent as well as ligand-dependent receptor activity. Localization of the crosslink in relation to the cell membrane is important for configuration of the extracellular domain and the consecutive signal transduction.


Subject(s)
Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Receptors, Atrial Natriuretic Factor/chemistry , Receptors, Atrial Natriuretic Factor/metabolism , Animals , COS Cells , Chlorocebus aethiops , Dimerization , Guanylate Cyclase/genetics , Mutagenesis, Site-Directed , Protein Structure, Tertiary , RNA, Messenger/metabolism , Rats , Receptors, Atrial Natriuretic Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...