Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649752

ABSTRACT

Chronic stress has become a predominant factor associated with a variety of psychiatric disorders, such as depression and anxiety, in both human and animal models. Although multiple studies have looked at transcriptional changes after social defeat stress, these studies primarily focus on bulk tissues, which might dilute important molecular signatures of social interaction in activated cells. In this study, we employed the Arc-GFP mouse model in conjunction with chronic social defeat (CSD) to selectively isolate activated nuclei (AN) populations in the ventral hippocampus (vHIP) and prefrontal cortex (PFC) of resilient and susceptible animals. Nuclear RNA-seq of susceptible vs. resilient populations revealed distinct transcriptional profiles linked predominantly with neuronal and synaptic regulation mechanisms. In the vHIP, susceptible AN exhibited increased expression of genes related to the cytoskeleton and synaptic organization. At the same time, resilient AN showed upregulation of cell adhesion genes and differential expression of major glutamatergic subunits. In the PFC, susceptible mice exhibited upregulation of synaptotagmins and immediate early genes (IEGs), suggesting a potentially over-amplified neuronal activity state. Our findings provide a novel view of stress-exposed neuronal activation and the molecular response mechanisms in stress-susceptible vs. resilient animals, which may have important implications for understanding mental resilience.

2.
Bioinformatics ; 39(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37549052

ABSTRACT

SUMMARY: Oxford Nanopore Technologies' (ONT) sequencing platform offers an excellent opportunity to perform real-time analysis during sequencing. This feature allows for early insights into experimental data and accelerates a potential decision-making process for further analysis, which can be particularly relevant in the clinical context. Although some tools for the real-time analysis of DNA-sequencing data already exist, there is currently no application available for differential transcriptome data analysis designed for scientists or physicians with limited bioinformatics knowledge. Here, we introduce NanopoReaTA, a user-friendly real-time analysis toolbox for RNA-sequencing data from ONT. Sequencing results from a running or finished experiment are processed through an R Shiny-based graphical user interface with an integrated Nextflow pipeline for whole transcriptome or gene-specific analyses. NanopoReaTA provides visual snapshots of a sequencing run in progress, thus enabling interactive sequencing and rapid decision making that could also be applied to clinical cases. AVAILABILITY AND IMPLEMENTATION: Github https://github.com/AnWiercze/NanopoReaTA; Zenodo https://doi.org/10.5281/zenodo.8099825.


Subject(s)
Nanopores , Software , Gene Expression Profiling/methods , Transcriptome , Sequence Analysis, RNA/methods
3.
Cells ; 12(7)2023 03 30.
Article in English | MEDLINE | ID: mdl-37048124

ABSTRACT

In the last decade, we have witnessed an upsurge in nuclei-based studies, particularly coupled with next-generation sequencing. Such studies aim at understanding the molecular states that exist in heterogeneous cell populations by applying increasingly more affordable sequencing approaches, in addition to optimized methodologies developed to isolate and select nuclei. Although these powerful new methods promise unprecedented insights, it is important to understand and critically consider the associated challenges. Here, we provide a comprehensive overview of the rise of nuclei-based studies and elaborate on their advantages and disadvantages, with a specific focus on their utility for transcriptomic sequencing analyses. Improved designs and appropriate use of the various experimental strategies will result in acquiring biologically accurate and meaningful information.


Subject(s)
Cell Nucleus , High-Throughput Nucleotide Sequencing , Cell Nucleus/genetics , Gene Expression Profiling/methods
4.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204880

ABSTRACT

Dysregulated mammalian target of rapamycin (mTOR) activity is associated with various neurodevelopmental disorders ranging from idiopathic autism spectrum disorders (ASD) to syndromes caused by single gene defects. This suggests that maintaining mTOR activity levels in a physiological range is essential for brain development and functioning. Upon activation, mTOR regulates a variety of cellular processes such as cell growth, autophagy, and metabolism. On a molecular level, however, the consequences of mTOR activation in the brain are not well understood. Low levels of cholesterol are associated with a wide variety of neurodevelopmental disorders. We here describe numerous genes of the sterol/cholesterol biosynthesis pathway to be transcriptionally regulated by mTOR complex 1 (mTORC1) signaling in vitro in primary neurons and in vivo in the developing cerebral cortex of the mouse. We find that these genes are shared targets of the transcription factors SREBP, SP1, and NF-Y. Prenatal as well as postnatal mTORC1 inhibition downregulated expression of these genes which directly translated into reduced cholesterol levels, pointing towards a substantial metabolic function of the mTORC1 signaling cascade. Altogether, our results indicate that mTORC1 is an essential transcriptional regulator of the expression of sterol/cholesterol biosynthesis genes in the developing brain. Altered expression of these genes may be an important factor contributing to the pathogenesis of neurodevelopmental disorders associated with dysregulated mTOR signaling.


Subject(s)
Cholesterol/genetics , Neurons/metabolism , Protein Kinases/genetics , Sterol Regulatory Element Binding Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Animals , Autophagy/genetics , CCAAT-Binding Factor/genetics , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Cholesterol/biosynthesis , Gene Expression Regulation, Developmental/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Neurogenesis/genetics , Primary Cell Culture , Signal Transduction/genetics , Transcription, Genetic/genetics
5.
Int J Mol Sci ; 22(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069481

ABSTRACT

Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques "Isolation of Nuclei Tagged in Specific Cell Types" (INTACT) or "Fluorescence-Activated Nuclei Sorting" (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods-INTACT and FANS-from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.


Subject(s)
Cell Separation/methods , Flow Cytometry/methods , Animals , Cell Nucleus/metabolism , Chromatin/metabolism , Female , Fluorescence , Male , Mice , Protein Transport/physiology
6.
Nat Commun ; 11(1): 480, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980599

ABSTRACT

Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an imprinting disorder.


Subject(s)
Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , Histones/metabolism , Intellectual Disability/genetics , Intellectual Disability/metabolism , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Potassium Channels/genetics , Animals , Behavior, Animal , Benzamides , Brain/metabolism , Craniofacial Abnormalities/drug therapy , Disease Models, Animal , Female , Gene Knockdown Techniques , Genomic Imprinting , Histone Deacetylase Inhibitors/pharmacology , Humans , Intellectual Disability/drug therapy , Locus Coeruleus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Hypotonia/drug therapy , Mutation , Phenotype , Phenylenediamines/pharmacology , Potassium Channels/deficiency , Potassium Channels/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...