Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 33(47): 13490-13495, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29099603

ABSTRACT

Electrochemically driven phase transformations in redox-active nanoparticles (NPs) are important in a number of areas, including batteries and sensors. We use high-resolution electron microscopy in conjunction with ex situ electrochemical experiments on TEM grids to study the oxidative conversion of polycrystalline silver NPs to amorphous silver oxide nanoparticles and their reductive conversion back to single-crystal silver nanocrystals (NCs). Results show that during oxidation nucleation occurs uniformly at the NP surface, producing a Ag@Ag2O core@shell structure during growth. The images reveal polycrystalline Ag cores and amorphous Ag2O shells for these structures. Electron microscopy also showed that the electrochemical reduction of Ag2O NPs can produce single-crystal Ag nanocrystals, suggesting that point nucleation at the NP-electrode interface during reduction enables a growth mechanism favoring the formation of single-crystal nanoparticles.

2.
J Am Chem Soc ; 139(3): 1033-1036, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28052189

ABSTRACT

We describe a new electrochemical cycle that enables capture and release of carbon dioxide. The capture agent is benzylthiolate (RS-), generated electrochemically by reduction of benzyldisulfide (RSSR). Reaction of RS- with CO2 produces a terminal, sulfur-bound monothiocarbonate, RSCO2-, which acts as the CO2 carrier species, much the same as a carbamate serves as the CO2 carrier for amine-based capture strategies. Oxidation of the thiocarbonate releases CO2 and regenerates RSSR. The newly reported S-benzylthiocarbonate (IUPAC name benzylsulfanylformate) is characterized by 1H and 13C NMR, FTIR, and electrochemical analysis. The capture-release cycle is studied in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP TFSI) and dimethylformamide. Quantum chemical calculations give a binding energy of CO2 to benzyl thiolate of -66.3 kJ mol-1, consistent with the experimental observation of formation of a stable CO2 adduct. The data described here represent the first report of electrochemical behavior of a sulfur-bound terminal thiocarbonate.

3.
J Am Chem Soc ; 138(2): 641-50, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26683518

ABSTRACT

Chelating ionic liquids (ILs), in which polyether chains are pendent from the organic pyrrolidinium cation of the ILs (PEGylated ILs), were prepared that facilitate reversible electrochemical deposition/dissolution of Mg from a Mg(BH4)2 source. Mg electrodeposition processes in two specific PEGylated-ILs were compared against that in the widely studied N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid (BMPyrTFSI). The two chelating IL systems (one with a pendent polyether chain with three ether oxygens, MPEG3PyrTFSI, and the other with a seven-ether chain, MPEG7PyrTFSI) showed substantial improvement over BMPyrTFSI for Mg electrodeposition/dissolution. The best overall electrochemical performance was in MPEG7PyrTFSI. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were used to characterize galvanostatically deposited Mg, revealing production of pure, dendrite-free Mg deposits. Reversible Mg electrodeposition was achieved with high Coulombic efficiency (CE) of 90% and high current density (ca. 2 mA/cm(2) for the stripping peak). Raman spectroscopy was used to characterize Mg(2+) speciation in the PEGylated ILs and BMPyrTFSI containing Mg(BH4)2 by study of Raman modes of the coordinated and free states of borohydride, TFSI(-), and polyether COC groups. Quantitative analysis revealed that the polyether chains can displace both TFSI(-) and BH4(-) from the coordination sphere of Mg(2+). Comparison of the different IL electrolytes suggested that these displacement reactions may play a role in enabling Mg deposition/dissolution with high CE and current density in these PEGylated IL media. These results represent the first demonstration of reversible electrochemical deposition/dissolution of Mg in an ionic liquid specifically designed with this task in mind.

4.
J Phys Chem Lett ; 6(24): 4943-6, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26618410

ABSTRACT

Sequestering carbon dioxide emissions by the trap and release of CO2 via thermally activated chemical reactions has proven problematic because of the energetic requirements of the release reactions. Here we demonstrate trap and release of carbon dioxide using electrochemical activation, where the reactions in both directions are exergonic and proceed rapidly with low activation barriers. One-electron reduction of 4,4'-bipyridine forms the radical anion, which undergoes rapid covalent bond formation with carbon dioxide to form an adduct. One-electron oxidation of this adduct releases the bipyridine and carbon dioxide. Reversible trap and release of carbon dioxide over multiple cycles is demonstrated in solution at room temperature, and without the requirement for thermal activation.

5.
J Phys Chem B ; 119(23): 7003-14, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25985170

ABSTRACT

Raman spectroscopy was employed to assess the complex environment of magnesium salts in the n-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI) room-temperature ionic liquid (RTIL). At room temperature, Mg(TFSI)2 was miscible with BMPyrTFSI and formulated by [Mg(TFSI)2](x)[BMPyrTFSI](1-x) (x ≤ 0.55). Results suggest that at low concentrations of Mg(TFSI)2, anionic complexes in which Mg(2+) is surrounded by at least four TFSI(-) were formed. Above x = 0.2 an average of three TFSI(-) surround each Mg(2+). Below x = 0.12, there is a greater number of monodentate interactions between TFSI(-) oxygens and Mg(2+) cations, whereas above x = 0.12 bidentate ligands dominate. The fraction of TFSI(-) existing in the cis conformation increased with increasing Mg(2+) concentration. Mg(ClO4)2 was also studied as a Mg(2+) source. At equivalent mole fractions to those of the Mg(TFSI)2 salt, Mg(2+) from Mg(ClO4)2 was surrounded by only two TFSI(-) anions as ClO4(-) appeared to compete with TFSI(-) for coordination with Mg(2+). Similar behavior was also observed for the less soluble halide salts MgX2 (X = Cl, Br, I). Additions of chelating ligands were shown to effectively reduce the average number of TFSI(-) around Mg(2+) in a manner consistent with maintaining a sixfold oxygen coordination number around Mg(2+). Furthermore, an alternative class of ionic liquids, known as "solvate" ionic liquids, were produced. In this case glymes (Gm, m + 1 ether oxygens) were mixed with Mg(TFSI)2 so that glymes chelated Mg(2+), creating Mg(Gm)(y)(2+) complexes. The general formula was given by Mg(Gm)(y)(TFSI)2. These solvate ILs melt between 40 and 80 °C. Raman spectra clearly showed the glyme chelating ability and stronger coordination with Mg(2+) with respect to TFSI(-). Finally, linear sweep voltammograms showed the anodic stability of the glymes to improve due to coordination with Mg(2+).

6.
Nat Commun ; 6: 6230, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25711124

ABSTRACT

We are currently in the midst of a race to discover and develop new battery materials capable of providing high energy-density at low cost. By combining a high-performance Si electrode architecture with a room temperature ionic liquid electrolyte, here we demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75% capacity after 500 cycles. Such high performance is enabled by a stable half-cell coulombic efficiency of 99.97%, averaged over the first 200 cycles. Equally as significant, our detailed characterization elucidates the previously convoluted mechanisms of the solid-electrolyte interphase on Si electrodes. We provide a theoretical simulation to model the interface and microstructural-compositional analyses that confirm our theoretical predictions and allow us to visualize the precise location and constitution of various interfacial components. This work provides new science related to the interfacial stability of Si-based materials while granting positive exposure to ionic liquid electrochemistry.

7.
J Am Chem Soc ; 134(12): 5610-7, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22385520

ABSTRACT

Adenosine triphosphate (ATP)-capped silver nanoparticles (ATP-Ag NPs) were synthesized by reduction of AgNO(3) with borohydride in water with ATP as a capping ligand. The NPs obtained were characterized using transmission electron microscopy (TEM), UV-vis absorption spectroscopy, X-ray diffraction, and energy-dispersive X-ray analysis. A typical preparation produced ATP-Ag NPs with diameters of 4.5 ± 1.1 nm containing ~2800 Ag atoms and capped with 250 ATP capping ligands. The negatively charged ATP caps allow NP incorporation into layer-by-layer (LbL) films with poly(diallyldimethylammonium) chloride at thiol-modified Au electrode surfaces. Cyclic voltammetry in a single-layer LbL film of NPs showed a chemically reversible oxidation of Ag NPs to silver halide NPs in aqueous halide solutions and to Ag(2)O NPs in aqueous hydroxide solutions. TEM confirmed that this takes place via a redox-driven solid-state phase transformation. The charge for these nontopotactic phase transformations corresponded to a one-electron redox process per Ag atom in the NP, indicating complete oxidation and reduction of all Ag atoms in each NP during the electrochemical phase transformation.


Subject(s)
Adenosine Triphosphate/chemistry , Metal Nanoparticles/chemistry , Phase Transition , Silver/chemistry , Metal Nanoparticles/ultrastructure , Oxidation-Reduction , Particle Size , X-Ray Diffraction
8.
Analyst ; 135(8): 1817-29, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20502780

ABSTRACT

Even with the advent of industry produced electrochemical DNA analysis chips, electrochemical DNA hybridization detection continues to be an intensive research focus area. The advantages of electrochemical detection continue to inspire efforts to improve selectivity and sensitivity. Here, we summarize the landscape of recent efforts in electrochemical DNA hybridization detection. We specifically focus on some main areas from where novel work continues to originate: redox active molecules designed for specific interaction with double stranded DNA, DNA mimics to eliminate background electrochemical signals, external nanoparticle or enzyme modifications for sensitivity enhancements, split and self-hybridizing single stranded DNA probe modifications, and novel catalytic oxidation techniques. Additionally, we touch on the use of DNA hybridization sensors to monitor alternative biochemical (non-DNA hybridization) processes.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Electrochemistry , Nucleic Acid Hybridization
9.
Langmuir ; 25(6): 3839-44, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19275185

ABSTRACT

Diviologen molecules of the general formula CH3(CH2)11V2+(CH2)6V2+(CH2)11CH3 (C12VC6VCI2, V2+ = 4,4'-bipyridinium or viologen) were employed to electrochemically assay DNA hybridization to PNA probes immobilized at Au electrodes. Immobilized 15-mer PNA probes were exposed to 25-mer DNA oligonucleotides containing either complementary or single base mismatched sequences. In the presence of complementary PNA-DNA hybrids, the V2+/+ redox couple of C12VC6VC12 exhibited a unique double-wave cyclic voltammogram, with a formal potential shifted -100 mV from the E(f) in the presence of single base mismatched DNA hybrids or PNA probes alone. Integration of the CVs demonstrated that C12VC6VC12 exhibited binding cooperativity to the complementary PNA-DNA hybrids and saturated at a ratio of 2:1 (C12VC6VC12:hybrid). Reduced C12VC6VC12 (V+) absorption spectra showed a significant lambda(max) blue shift (22 nm) in the presence of complementary hybrids compared to the lambda(max) in the presence of PNA or mismatched DNA hybrids. Chronocoulometry was employed to assay surface populations and obtain thermodynamics for C12VC6VC12 binding. These data are consistent with C12VC6VC12 bound in the minor groove of complementary hybrids as face-to-face pi-dimers. This approach to distinguishing complementary hybrids from mismatched hybrids is novel, with potential applications involving detection of DNA damage or single nucleotide polymorphism (SNP) analysis.


Subject(s)
DNA/chemistry , Nucleic Acid Hybridization , Oxidation-Reduction , Peptide Nucleic Acids/chemistry , Absorption , Base Pair Mismatch , DNA Damage , Dimerization , Electrochemistry/methods , Electrodes , Models, Chemical , Polymorphism, Single Nucleotide , Pyridinium Compounds/chemistry , Surface Properties , Thermodynamics
10.
Anal Chem ; 79(18): 6922-6, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17696404

ABSTRACT

The synthesis and DNA binding properties of a bis-naphthyl imide tetracationic diviologen compound NI(CH2)3V(2+)(CH2)6V(2+)(CH2)3NI (where V(2+) = 4,4'-bipyridinium and NI = naphthyl imide, NIV) are described. Binding to thiolated ssDNA and dsDNA immobilized at Au electrodes was characterized using the electrochemical response for reduction of the V(2+) state to the V+ (viologen radical cation) state. Isotherms and binding constants for this molecule to both forms of immobilized DNA were generated in this fashion. The character of the binding isotherm for dsDNA suggests bis-intercalation. Under high saline conditions, the diviologen molecule dissociated 160 times slower from dsDNA compared to ssDNA. Slow dissociation kinetics from dsDNA (kd =7.0 x 10-5 s(-1)) allow this molecule to be used as an effective DNA hybridization indicator.


Subject(s)
DNA Probes/chemistry , DNA/chemistry , Intercalating Agents/chemical synthesis , Naphthalimides/chemistry , Viologens/chemistry , DNA/classification , DNA/metabolism , Dimerization , Electrochemistry , Intercalating Agents/chemistry , Molecular Structure , Thermodynamics
11.
Langmuir ; 22(25): 10821-9, 2006 Dec 05.
Article in English | MEDLINE | ID: mdl-17129066

ABSTRACT

Novel tetracationic diviologen compounds of the general formula CH3(CH2)nV2+(CH2)6V2+(CH2)nCH3 (where V2+ = 4,4'-bipyridinium and n = 5 or 11) were investigated as electrochemical reporters of DNA duplex formation. These compounds bind to both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) when the DNA is either present in solution or immobilized at electrode surfaces. Binding to thiolated ssDNA and dsDNA immobilized at Au electrodes was characterized using the electrochemical response for the reduction of the V2+ state to the V+ (viologen radical cation) state. An analysis of the charge for this reduction provided isotherms and binding constants for binding of these diviologens to both forms of immobilized DNA. Saturation of the binding is achieved at solution concentrations near 20 microM. For both the n = 5 and 11 diviologens, binding to ssDNA is driven by electrostatic charge neutralization. For the n = 11 case, the binding is cooperative. In the presence of dsDNA, the n = 11 diviologen exhibits a unique reduction potential for the V2+/+ redox couple that is shifted approximately 100 mV negative of that in the presence of ssDNA. This new electrochemical signature is attributed to the reduction of viologen groups bound in the minor groove of the DNA duplex. For dsDNA in solution, an increase in the thermal denaturation temperature (Tm) from 60 to 66 degrees C as a function of the n = 11 diviologen concentration confirmed its interaction with the duplex. Circular dichroism (CD) spectroscopy also was used to investigate the binding of both the V2+ and V+ redox states of the n = 11 diviologen to dsDNA in solution. For the V+ state, a CD signal was observed that is consistent with the presence of face-to-face pi dimers of the viologen groups. This unambiguously demonstrates the binding of this redox state of the diviologen in the dsDNA minor groove and the formation of such dimers in the minor groove.


Subject(s)
DNA/chemistry , Pyridinium Compounds/chemistry , Binding Sites , Cations/chemistry , Electrochemistry , Electrodes , Gold/chemistry , Molecular Structure , Structure-Activity Relationship , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...