Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 21(4): 570-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20459474

ABSTRACT

The goal of our study was to discriminate potential genetic differences between humans who are in both endpoints of the sports performance continuum (i.e. world-class endurance vs power athletes). We used DNA-microarray technology that included 36 genetic variants (within 20 different genes) to compare the genetic profile obtained in two cohorts of world-class endurance (N=100) and power male athletes (N=53) of the same ethnic origin. Stepwise multivariate logistic regression showed that the rs1800795 (IL6-174 G/C), rs1208 (NAT2 K268R) and rs2070744 (NOS3-786 T/C) polymorphisms significantly predicted sport performance (model χ(2) =25.3, df=3, P-value <0.001). Receiver-operating characteristic (ROC) curve analysis showed a significant discriminating accuracy of the model, with an area under the ROC curve of 0.72 (95% confidence interval: 0.66-0.81). The contribution of the studied genetic factors to sports performance was 21.4%. In summary, although an individual's potential for excelling in endurance or power sports can be partly predicted based on specific genetic variants (many of which remain to be identified), the contribution of complex gene-gene interactions, environmental factors and epigenetic mechanisms are also important contributors to the "complex trait" of being an athletic champion. Such trait is likely not reducible to defined genetic polymorphisms.


Subject(s)
Athletic Performance/physiology , Muscle Strength/genetics , Physical Endurance/genetics , Polymorphism, Genetic , Adult , Genotype , Humans , Male , Microarray Analysis , Predictive Value of Tests , ROC Curve , Regression Analysis , Spain , Young Adult
2.
Biomarkers ; 10(5): 342-59, 2005.
Article in English | MEDLINE | ID: mdl-16243720

ABSTRACT

Metallothionein (MT) induction is widely used as a biomarker of exposure to metals in mussels. The aims of the present work were first to compare the suitability of spectrophotometry and differential pulse polarography (DPP) for MT detection in mussels exposed to 200 ppb cadmium for 9 days in a laboratory experiment and in mussels sampled in different seasons from expected pollution gradients along the Mediterranean Sea; second, to intercalibrate the widely used spectrophotometric method using mussels from Saronikos Gulf. In the intercalibration of the spectrophotometric method, similar results (p>0.05) were obtained by two different research teams indicating a good reproducibility of the technique. However, polarographic and spectrophotometric methods gave significantly (p<0.05) different results in laboratory and field studies. In the laboratory experiment, MT values detected with DPP were nine times higher than with spectrophotometry. The results obtained by the two methods were significantly correlated. Both methods could discriminate between control and exposed mussels. In field studies, MT values obtained by DPP were 34-38-fold higher than with spectrophotometry, and MT concentrations measured by both methods were not correlated. This discrepancy could be due to several factors, including the low levels of bioavailable metals in the studied areas and the possibility that the different methods can measure MT isoforms differentially. Further work is needed to decipher the functions of MT isoforms in mussels. This information is relevant for the application of MT as a biomarker in biomonitoring programmes.


Subject(s)
Bivalvia/chemistry , Metallothionein/analysis , Spectrophotometry, Atomic/methods , Animals , Calibration , Mediterranean Sea , Metals/analysis , Polarography , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...