Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12880, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37553456

ABSTRACT

GaAsBi nanowires represent a novel and promising material platform for future nano-photonics. However, the growth of high-quality GaAsBi nanowires and GaAsBi alloy is still a challenge due to a large miscibility gap between GaAs and GaBi. In this work we investigate effects of Bi incorporation on lattice dynamics and carrier recombination processes in GaAs/GaAsBi core/shell nanowires grown by molecular-beam epitaxy. By employing photoluminescence (PL), PL excitation, and Raman scattering spectroscopies complemented by scanning electron microscopy, we show that increasing Bi-beam equivalent pressure (BEP) during the growth does not necessarily result in a higher alloy composition but largely affects the carrier localization in GaAsBi. Specifically, it is found that under high BEP, bismuth tends either to be expelled from a nanowire shell towards its surface or to form larger clusters within the GaAsBi shell. Due to these two processes the bandgap of the Bi-containing shell remains practically independent of the Bi BEP, while the emission spectra of the NWs experience a significant red shift under increased Bi supply as a result of the localization effect.

2.
Phys Rev Lett ; 127(12): 127401, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597090

ABSTRACT

Fano resonance is a fundamental physical process that strongly affects the electronic transport, optical, and vibronic properties of matter. Here, we provide the first experimental demonstration of its profound effect on spin properties in semiconductor nanostructures. We show that electron spin generation in InAs/GaAs quantum-dot structures is completely quenched upon spin injection from adjacent InGaAs wetting layers at the Fano resonance due to coupling of light-hole excitons and the heavy-hole continuum of the interband optical transitions, mediated by an anisotropic exchange interaction. Using a master equation approach, we show that such quenching of spin generation is robust and independent of Fano parameters. This work therefore identifies spin-dependent Fano resonance as a universal spin loss channel in quantum-dot systems with an inherent symmetry-breaking effect.

3.
Sci Rep ; 10(1): 10610, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32606295

ABSTRACT

We theoretically study helicity-dependent photocurrent in a three-dimensional topological insulator Bi2Te3 under elastic scattering of different symmetries. By exploring spin-selective optical transitions and symmetry-breaking scattering, we are able to address the out-of-plane spin texture of the topological helical surface states and to generate directional, spin-polarization tunable photocurrent that is otherwise forbidden for the original C3v symmetry of the surface. This can be achieved regardless of the Fermi level, even under the condition when the topological states are inaccessible in dark. This work paves the way to robustly explore the out-of-plane spin texture for harvesting opto-spintronic functionalities of topological insulators.

4.
J Phys Chem Lett ; 11(12): 4873-4878, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32486640

ABSTRACT

We show by electron spin resonance (ESR) and Raman spectroscopies that the crystal phase transition of the lead-free double-perovskite Cs2AgBiBr6 has a profound symmetry-breaking effect on the high spin states of, for example, a transition-metal ion Fe3+ and the vibrational modes. It lifts their degeneracy when the crystal undergoes the cubic-tetragonal phase transition, splitting the six-fold degenerate S = 5/2 state of Fe3+ to three Kramer doublets and the enharmonic breathing mode Tg of the MBr6 octahedra (M = Ag, Bi, Fe) into Eg + Ag. The magnitudes of both spin and Raman line splitting are shown to directly correlate with the strength of the tetragonal strain field. This work, in turn, demonstrates the power of the ESR and Raman spectroscopies in probing structural phase transitions and in providing in-depth information on the interplay between the structural, spin, and vibrational properties of lead-free double perovskites, a newly emerging and promising class of materials for low-cost and high-efficiency photovoltaics and optoelectronics.

5.
Nanotechnology ; 31(22): 225706, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32066128

ABSTRACT

The effects of Bi incorporation on the recombination process in wurtzite (WZ) GaBiAs nanowires are studied by employing micro-photoluminescence (µ-PL) and time-resolved PL spectroscopies. It is shown that at low temperatures (T < 75 K) Bi-induced localization effects cause trapping of excitons within band-tail states, which prolongs their lifetime and suppresses surface nonradiative recombination (SNR). With increasing temperature, the trapped excitons become delocalized and their lifetime rapidly shortens due to facilitated SNR. Furthermore, Bi incorporation in the GaBiAs NW is found to have a minor influence on the surface states responsible for SNR.

6.
Nanotechnology ; 31(6): 065702, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-31658456

ABSTRACT

We report on optimization of growth conditions of GaAs/GaNAs/GaAs core/shell/shell nanowire (NW) structures emitting at ∼1 µm, aiming to increase their light emitting efficiency. A slight change in growth temperature is found to critically affect optical quality of the active GaNAs shell and is shown to result from suppressed formation of non-radiative recombination (NRR) centers under the optimum growth temperature. By employing the optically detected magnetic resonance spectroscopy, we identify gallium vacancies and gallium interstitials as being among the dominant NRR defects. The radiative efficiency of the NWs can be further improved by post-growth annealing at 680 °C, which removes the gallium interstitials.

7.
Nano Lett ; 19(4): 2674-2681, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30908918

ABSTRACT

We report on experimental determination of the strain and bandgap of InAsP in epitaxially grown InAsP-InP core-shell nanowires. The core-shell nanowires are grown via metal-organic vapor phase epitaxy. The as-grown nanowires are characterized by transmission electron microscopy, X-ray diffraction, micro-photoluminescence (µPL) spectroscopy, and micro-Raman (µ-Raman) spectroscopy measurements. We observe that the core-shell nanowires are of wurtzite (WZ) crystal phase and are coherently strained with the core and the shell having the same number of atomic planes in each nanowire. We determine the predominantly uniaxial strains formed in the core-shell nanowires along the nanowire growth axis and demonstrate that the strains can be described using an analytical expression. The bandgap energies in the strained WZ InAsP core materials are extracted from the µPL measurements of individual core-shell nanowires. The coherently strained core-shell nanowires demonstrated in this work offer the potentials for use in constructing novel optoelectronic devices and for development of piezoelectric photovoltaic devices.


Subject(s)
Arsenicals/isolation & purification , Luminescent Measurements/methods , Nanowires/chemistry , Arsenicals/chemistry , Metal-Organic Frameworks/chemistry , Particle Size , Spectrum Analysis, Raman , X-Ray Diffraction
8.
Nanotechnology ; 30(24): 244002, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30794991

ABSTRACT

We report the growth of dilute nitride GaNAs and GaInNAs core-multishell nanowires (NWs) using molecular beam epitaxy assisted by a plasma source. Using the self-catalyst vapor-liquid-solid growth mode, these NWs were grown on Si(111) and silicon on insulator substrates. The GaNAs and GaInNAs shells contain nitrogen up to 3%. Axial cross-sectional scanning transmission electron microscopy measurements and energy-dispersive x-ray spectrometry confirm the formation of the core-multishell NW structure. We obtained high-quality GaNAs NWs with nitrogen compositions up to 2%. On the other hand, GaNAs containing 3% nitrogen, and GaInNAs NWs, show distorted structures; moreover, the optical emissions seem to be related to defects. Further optimisations of the growth conditions will improve these properties, promising future applications in nanoscale optoelectronics.

9.
Nat Commun ; 8: 15401, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28530227

ABSTRACT

A three-dimensional (3D) topological insulator (TI) is a unique quantum phase of matter with exotic physical properties and promising spintronic applications. However, surface spin current in a common 3D TI remains difficult to control and the out-of-plane spin texture is largely unexplored. Here, by means of surface spin photocurrent in Bi2Te3 TI devices driven by circular polarized light, we identify the subtle effect of the spin texture of the topological surface state including the hexagonal warping term on the surface current. By exploring the out-of-plane spin texture, we demonstrate spin injection from GaAs to TI and its significant contribution to the surface current, which can be manipulated by an external magnetic field. These discoveries pave the way to not only intriguing new physics but also enriched spin functionalities by integrating TI with conventional semiconductors, such that spin-enabled optoelectronic devices may be fabricated in such hybrid structures.

10.
Nanoscale ; 8(35): 15939-47, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27537077

ABSTRACT

Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heterostructure engineering in GaNAs and GaAs/GaNAs coaxial NWs. In this work, it is shown that incorporation of nitrogen in GaAs NWs leads to formation of three-dimensional confining potentials caused by short-range fluctuations in the nitrogen composition, which are superimposed on long-range alloy disorder. The resulting localized states exhibit a quantum-dot like electronic structure, forming optically active states in the GaNAs shell. By directly correlating the structural and optical properties of individual NWs, it is also shown that formation of the localized states is efficient in pure zinc-blende wires and is further facilitated by structural polymorphism. The light emission from these localized states is found to be spectrally narrow (∼50-130 µeV) and is highly polarized (up to 100%) with the preferable polarization direction orthogonal to the NW axis, suggesting a preferential orientation of the localization potential. These properties of self-assembled nano-emitters embedded in the GaNAs-based nanowire structures may be attractive for potential optoelectronic applications.

11.
Nat Commun ; 4: 1751, 2013.
Article in English | MEDLINE | ID: mdl-23612292

ABSTRACT

Nuclear spin hyperpolarization is essential to future solid-state quantum computation using nuclear spin qubits and in highly sensitive magnetic resonance imaging. Though efficient dynamic nuclear polarization in semiconductors has been demonstrated at low temperatures for decades, its realization at room temperature is largely lacking. Here we demonstrate that a combined effect of efficient spin-dependent recombination and hyperfine coupling can facilitate strong dynamic nuclear polarization of a defect atom in a semiconductor at room temperature. We provide direct evidence that a sizeable nuclear field (~150 Gauss) and nuclear spin polarization (~15%) sensed by conduction electrons in GaNAs originates from dynamic nuclear polarization of a Ga interstitial defect. We further show that the dynamic nuclear polarization process is remarkably fast and is completed in <5 µs at room temperature. The proposed new concept could pave a way to overcome a major obstacle in achieving strong dynamic nuclear polarization at room temperature, desirable for practical device applications.

12.
Nanotechnology ; 24(1): 015701, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23221124

ABSTRACT

Optically detected magnetic resonance (ODMR) complemented by photoluminescence measurements is used to evaluate optical and defect properties of ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition. By monitoring visible emissions, several grown-in defects are revealed and attributed to Zn vacancies, shallow (but not effective mass) donor and exchange-coupled pairs of Zn vacancies and Zn interstitials. It is also found that the intensity of the donor-related ODMR signals is substantially lower in the NWs compared with that in bulk ZnO. This may indicate that formation of native donors is suppressed in NWs, which is beneficial for achieving p-type conductivity.


Subject(s)
Magnetic Resonance Spectroscopy , Nanowires/chemistry , Optical Phenomena , Zinc Oxide/chemistry , Nanowires/ultrastructure
13.
Nanotechnology ; 23(42): 425201, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-23037943

ABSTRACT

We show that coating ZnO nanowires (NWs) with a transition metal, such as Ni, can increase the efficiency of light emission at room temperature. Based on detailed structural and optical studies, this enhancement is attributed to energy transfer between near-band-edge emission in ZnO and surface plasmons in the Ni film which leads to an increased rate of the spontaneous emission. It is also shown that the Ni coating leads to an enhanced non-radiative recombination via surface states, which becomes increasingly important at low measurement temperatures and in annealed ZnO/Ni NWs.


Subject(s)
Light , Nanowires/chemistry , Nickel/chemistry , Zinc Oxide/chemistry , Nanowires/ultrastructure , Spectrum Analysis, Raman , Time Factors , X-Ray Diffraction
14.
J Phys Condens Matter ; 24(14): 145304, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22417853

ABSTRACT

Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in the optical and spin polarization of the QDs is observed with increasing magnetic field in the range 0-2 T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by the hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields, when these spin depolarization processes are quenched, the electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits a rather strong field dependence under non-resonant excitation. In contrast, such a field dependence is practically absent in more 'isotropic' QD structures (e.g. single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e. wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.


Subject(s)
Arsenicals/chemistry , Electron Spin Resonance Spectroscopy , Gallium/chemistry , Indium/chemistry , Magnetic Fields , Quantum Dots , Spin Labels , Anisotropy , Computer Simulation
15.
Nanotechnology ; 23(13): 135705, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22421164

ABSTRACT

The Hanle effect in InAs/GaAs quantum dots (QDs) is studied under optical orientation as a function of temperature over the range of 150-300 K, with the aim of understanding the physical mechanism responsible for the observed sharp increase of electron spin polarization with increasing temperature. The deduced spin lifetime T(s) of positive trions in the QDs is found to be independent of temperature, and is also insensitive to excitation energy and density. It is argued that the measured T(s) is mainly determined by the longitudinal spin-flip time (T(1)) and the spin dephasing time (T(2)*) of the studied QD ensemble, of which both are temperature independent over the studied temperature range and the latter makes a larger contribution. The observed sharply rising QD spin polarization degree with increasing temperature, on the other hand, is shown to be induced by an increase in spin injection efficiency from the barrier/wetting layer and also by a moderate increase in spin detection efficiency of the QD.

16.
Nanotechnology ; 20(37): 375401, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19706957

ABSTRACT

Optical spin injection is studied in novel laterally-arranged self-assembled InAs/GaAs quantum dot structures, by using optical orientation measurements in combination with tunable laser spectroscopy. It is shown that spins of uncorrelated free carriers are better conserved during the spin injection than the spins of correlated electrons and holes in an exciton. This is attributed to efficient spin relaxation promoted by the electron-hole exchange interaction of the excitons. Our finding suggests that separate carrier injection, such as that employed in electrical spin injection devices, can be advantageous for spin conserving injection. It is also found that the spin injection efficiency decreases for free carriers with high momentum, due to the acceleration of spin relaxation processes.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Quantum Dots , Spectrum Analysis/methods , Microscopy, Atomic Force , Nanotechnology
17.
Nat Mater ; 8(3): 198-202, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19219029

ABSTRACT

Generating, manipulating and detecting electron spin polarization and coherence at room temperature is at the heart of future spintronics and spin-based quantum information technology. Spin filtering, which is a key issue for spintronic applications, has been demonstrated by using ferromagnetic metals, diluted magnetic semiconductors, quantum point contacts, quantum dots, carbon nanotubes, multiferroics and so on. This filtering effect was so far restricted to a limited efficiency and primarily at low temperatures or under a magnetic field. Here, we provide direct and unambiguous experimental proof that an electron-spin-polarized defect, such as a Ga(i) self-interstitial in dilute nitride GaNAs, can effectively deplete conduction electrons with an opposite spin orientation and can thus turn the non-magnetic semiconductor into an efficient spin filter operating at room temperature and zero magnetic field. This work shows the potential of such defect-engineered, switchable spin filters as an attractive alternative to generate, amplify and detect electron spin polarization at room temperature without a magnetic material or external magnetic fields.

18.
J Phys Condens Matter ; 21(17): 174211, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-21825415

ABSTRACT

We report on a study of spin-dependent recombination processes (SDR) for conduction band electrons on deep paramagnetic centers in a series of GaAs(1-y)N(y) epilayers by time-resolved optical orientation experiments. We demonstrate that this dilute nitride compound can be used as an effective electron spin filter under a polarized optical excitation of appropriate intensity. This optimum intensity can moreover be controlled by adjusting the nitrogen composition in the layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...