Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(4): 1232-1249, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38511828

ABSTRACT

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.


Subject(s)
Carbapenems , beta-Lactamases , Carbapenems/pharmacology , Carbapenems/chemistry , Meropenem/pharmacology , beta-Lactamases/chemistry , Bacterial Proteins/chemistry
2.
ACS Infect Dis ; 9(5): 1123-1136, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37130087

ABSTRACT

The wide spread of carbapenem-hydrolyzing ß-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the Enterobacteriaceae family, which includes many important clinical pathogens such as Klebsiella pneumoniae and Escherichia coli, production of class D ß-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed. Here, we report evaluation of a novel, C5α-methyl-substituted carbapenem, NA-1-157, and show that its MICs against bacteria producing OXA-48-type enzymes were reduced by 4- to 32-fold when compared to meropenem. When combined with commercial carbapenems, the potency of NA-1-157 was further enhanced, resulting in target potentiation concentrations ranging from 0.125 to 2 µg/mL. Kinetic studies demonstrated that the compound is poorly hydrolyzed by OXA-48, with a catalytic efficiency 30- to 50-fold lower than those of imipenem and meropenem. Acylation of OXA-48 by NA-1-157 was severely impaired, with a rate 10,000- to 36,000-fold slower when compared to the commercial carbapenems. Docking, molecular dynamics, and structural studies demonstrated that the presence of the C5α-methyl group in NA-1-157 creates steric clashes within the active site, leading to differences in the position and the hydrogen-bonding pattern of the compound, which are incompatible with efficient acylation. This study demonstrates that NA-1-157 is a promising novel carbapenem for treatment of infections caused by OXA-48-producing bacterial pathogens.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Carbapenems/pharmacology , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella/metabolism , Kinetics , beta-Lactamases/metabolism , Escherichia coli/metabolism
3.
mBio ; 13(3): e0036722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35420470

ABSTRACT

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to ß-lactam antibiotics by producing ß-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of ß-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D ß-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-ß-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. IMPORTANCE Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D ß-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Proteins , beta-Lactamase Inhibitors , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbapenems/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
4.
ACS Infect Dis ; 7(8): 2425-2436, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34191496

ABSTRACT

Commercial carbapenem antibiotics are being used to treat multidrug resistant (MDR) and extensively drug resistant (XDR) tuberculosis. Like other ß-lactams, carbapenems are irreversible inhibitors of serine d,d-transpeptidases involved in peptidoglycan biosynthesis. In addition to d,d-transpeptidases, mycobacteria also utilize nonhomologous cysteine l,d-transpeptidases (Ldts) to cross-link the stem peptides of peptidoglycan, and carbapenems form long-lived acyl-enzymes with Ldts. Commercial carbapenems are C2 modifications of a common scaffold. This study describes the synthesis of a series of atypical, C5α modifications of the carbapenem scaffold, microbiological evaluation against Mycobacterium tuberculosis (Mtb) and the nontuberculous mycobacterial species, Mycobacterium abscessus (Mab), as well as acylation of an important mycobacterial target Ldt, LdtMt2. In vitro evaluation of these C5α-modified carbapenems revealed compounds with standalone (i.e., in the absence of a ß-lactamase inhibitor) minimum inhibitory concentrations (MICs) superior to meropenem-clavulanate for Mtb, and meropenem-avibactam for Mab. Time-kill kinetics assays showed better killing (2-4 log decrease) of Mtb and Mab with lower concentrations of compound 10a as compared to meropenem. Although susceptibility of clinical isolates to meropenem varied by nearly 100-fold, 10a maintained excellent activity against all Mtb and Mab strains. High resolution mass spectrometry revealed that 10a acylates LdtMt2 at a rate comparable to meropenem, but subsequently undergoes an unprecedented carbapenem fragmentation, leading to an acyl-enzyme with mass of Δm = +86 Da. Rationale for the divergence of the nonhydrolytic fragmentation of the LdtMt2 acyl-enzymes is proposed. The observed activity illustrates the potential of novel atypical carbapenems as prospective candidates for treatment of Mtb and Mab infections.


Subject(s)
Carbapenems , Peptidyl Transferases , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Prospective Studies , beta-Lactamase Inhibitors/pharmacology
5.
Antibiotics (Basel) ; 10(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672671

ABSTRACT

Treatment of infections caused by Acinetobacter spp., particularly A. baumannii, is a major clinical problem due to its high rates of antibiotic resistance. New strategies must be developed; therefore, restoration of ß-lactam efficacy through the use of ß-lactamase inhibitors is paramount. Activities of the antibiotics imipenem, meropenem, cefepime, and sulbactam in combination with the penicillin-sulfone inhibitor LN-1-255 were tested by microdilution against 148 isolates of Acinetobacter spp. collected in 14 hospitals in Spain in 2020. Relevantly, the MIC90 (i.e., minimum concentration at which 90% of isolates were inhibited) of antibiotics in combination with LN-1-255 decreased 4- to 8-fold for all of the Acinetobacter isolates. Considering only the carbapenem-resistant A. baumannii isolates, which produce carbapenem-hydrolyzing class D ß-lactamases, the addition of LN-1-255 decreased the resistance rates from 95.1% to 0% for imipenem, from 100% to 9.8% for meropenem, from 70.7% to 7.3% for cefepime, and sulbactam resistance rates from 9.8% to 0% and intermediate susceptibility rates from 53.7% to 2.4%. The inhibitor also decreased the minimum inhibitory concentrations (MICs) when tested against non-carbapenem-resistant Acinetobacter spp. isolates. In conclusion, combining LN-1-255 with imipenem, meropenem, cefepime, and sulbactam to target A. baumannii, and especially carbapenem-resistant isolates, represents an attractive option that should be developed for the treatment of infections caused by this pathogen.

6.
Article in English | MEDLINE | ID: mdl-31383666

ABSTRACT

The carbapenem-hydrolyzing class D ß-lactamases (CHDLs) are the main mechanism of carbapenem resistance in Acinetobacter baumannii CHDLs are not effectively inactivated by clinically available ß-lactam-type inhibitors. We have previously described the in vitro efficacy of the inhibitor LN-1-255 in combination with carbapenems. The aim of this study was to compare the efficacy of LN-1-255 with that of imipenem in murine pneumonia using A. baumannii strains carrying their most extended carbapenemases, OXA-23 and OXA-24/40. The blaOXA-23 and blaOXA-24/40 genes were cloned into the carbapenem-susceptible A. baumannii ATCC 17978 strain. Clinical isolates Ab1 and JC12/04, producing the enzymes OXA-23 and OXA-24/40, respectively, were used in the study. Pharmacokinetic (PK) parameters were determined. An experimental pneumonia model was used to evaluate the efficacy of the combined imipenem-LN-1-255 therapy. MICs of imipenem decreased between 32- and 128-fold in the presence of LN-1-255. Intramuscular treatment with imipenem-LN-1-255 (30/50 mg/kg) decreased the bacterial burden by (i) 4 and 1.7 log10 CFU/g lung in the infection with the ATCC 17978-OXA-23 and Ab1 strains, respectively, and by (ii) 2.5 and 4.5 log10 CFU/g lung in the infection produced by the ATCC 17978-OXA-24/40 and the JC12/04 strains, respectively. In all assays, combined therapy offered higher protection against pneumonia than that provided by monotherapy. No toxicity was observed in treated mice. Imipenem treatment combined with LN-1-255 treatment significantly reduced the severity of infection by carbapenem-resistant A. baumannii strains carrying CHDLs. Preclinical assays demonstrated the potential of LN-1-255 and imipenem therapy as a new antibacterial treatment.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Anti-Infective Agents/therapeutic use , Cyclic S-Oxides/therapeutic use , Imipenem/therapeutic use , Penicillins/therapeutic use , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/metabolism
7.
J Chem Inf Model ; 58(9): 1902-1914, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30107123

ABSTRACT

The global rise of metallo-ß-lactamases (MBLs) is problematic due to their ability to inactivate most ß-lactam antibiotics. MBL inhibitors that could be coadministered with and restore the efficacy of ß-lactams are highly sought after. In this study, we employ virtual screening of candidate MBL inhibitors without thiols or carboxylates to avoid off-target effects using the Avalanche software package, followed by experimental validation of the selected compounds. As target enzymes, we chose the clinically relevant B1 MBLs NDM-1, IMP-1, and VIM-2. Among 32 compounds selected from an approximately 1.5 million compound library, 6 exhibited IC50 values less than 40 µM against NDM-1 and/or IMP-1. The most potent inhibitors of NDM-1, IMP-1, and VIM-2 had IC50 values of 19 ± 2, 14 ± 1, and 50 ± 20 µM, respectively. While chemically diverse, the most potent inhibitors all contain combinations of hydroxyl, ketone, ester, amide, or sulfonyl groups. Docking studies suggest that these electron-dense moieties are involved in Zn(II) coordination and interaction with protein residues. These novel scaffolds could serve as the basis for further development of MBL inhibitors. A procedure for renaming NDM-1 residues to conform to the class B ß-lactamase (BBL) numbering scheme is also included.


Subject(s)
Drug Evaluation, Preclinical/methods , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/classification , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Circular Dichroism , Computer Simulation , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Enzymologic , Mass Spectrometry , Models, Chemical , Molecular Structure , Software
8.
Tetrahedron Lett ; 57(30): 3330-3333, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27956752

ABSTRACT

Although α-diazo-ß-ketoesters are synthetically versatile intermediates, methodology for introducing this functionality into complex molecules is still limited, most frequently involving a carboxylic acid precursor, which is then activated and transformed into a ß-ketoester, with the diazo group being subsequently added with a diazo transfer reagent. While introducing this highly functional moiety in a convergent one step process would be ideal, such an objective is limited by the relatively few studies which address functionalization of the α-diazo-ß-ketoester at the γ-position. In the present investigation, we evaluate strategies, both new and established, for functionalizing α-diazo-ß-ketoesters, particularly with regard to generating compounds prospectively useful in the synthesis of C1-substituted carbapenems. We report the first δ-aldehydo-α-diazo-ß-ketoester as well as a method for its oxidation to the corresponding methyl ester, and the formation of a new substituted pyrazole under basic conditions.

9.
J Antimicrob Chemother ; 71(8): 2171-80, 2016 08.
Article in English | MEDLINE | ID: mdl-27125555

ABSTRACT

OBJECTIVES: Carbapenemases are the most important mechanism responsible for carbapenem resistance in Enterobacteriaceae. Among carbapenemases, OXA-48 presents unique challenges as it is resistant to ß-lactam inhibitors. Here, we test the capacity of the compound LN-1-255, a 6-alkylidene-2'-substituted penicillanic acid sulfone, to inhibit the activity of the carbapenemase OXA-48. METHODS: The OXA-48 gene was cloned and expressed in Klebsiella pneumoniae and Escherichia coli in order to obtain MICs in the presence of inhibitors (clavulanic acid, tazobactam and sulbactam) and LN-1-255. OXA-48 was purified and steady-state kinetics was performed with LN-1-255 and tazobactam. The covalent binding mode of LN-1-255 with OXA-48 was studied by docking assays. RESULTS: Both OXA-48-producing clinical and transformant strains displayed increased susceptibility to carbapenem antibiotics in the presence of 4 mg/L LN-1-255 (2-32-fold increased susceptibility) and 16 mg/L LN-1-255 (4-64-fold increased susceptibility). Kinetic assays demonstrated that LN-1-255 is able to inhibit OXA-48 with an acylation efficiency (k2/K) of 10 ±â€Š1 × 10(4) M(-1) s(-1) and a slow deacylation rate (koff) of 7 ±â€Š1 × 10(-4) s(-1). IC50 was 3 nM for LN-1-255 and 1.5 µM for tazobactam. Lastly, kcat/kinact was 500-fold lower for LN-1-255 than for tazobactam. CONCLUSIONS: In these studies, carbapenem antibiotics used in combination with LN-1-255 are effective against the carbapenemase OXA-48, an important emerging mechanism of antibiotic resistance. This provides an incentive for further investigations to maximize the efficacy of penicillin sulfone inhibition of class D plasmid-carried Enterobacteriaceae carbapenemases.


Subject(s)
Cyclic S-Oxides/metabolism , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Penicillins/metabolism , Sulbactam/metabolism , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Kinetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Protein Binding , beta-Lactamases/isolation & purification
10.
Tetrahedron Lett ; 56(23): 3385-3389, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26034332

ABSTRACT

A diastereoselective process for the formation of intermediates suitable for the preparation of C1 substituted carbapenems was developed. The process is readily scalable and does not involve organometallics or strong bases such as LDA.

11.
Antimicrob Agents Chemother ; 59(7): 4326-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25918145

ABSTRACT

Metallo-ß-lactamases inactivate most ß-lactam antibacterials, and much attention has been paid to their catalytic mechanism. One issue of controversy has been whether ß-lactam hydrolysis generally proceeds through an anionic intermediate bound to the active-site Zn(II) ions or not. The formation of an intermediate has not been shown conclusively in imipenemase (IMP) enzymes to date. Here, we provide evidence that intermediates are formed during the hydrolysis of meropenem and chromacef catalyzed by the variant IMP-25 and, to a lesser degree, IMP-1.


Subject(s)
Anti-Bacterial Agents/metabolism , Cephalosporins/metabolism , Thienamycins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Catalysis , Catalytic Domain , Hydrolysis , Kinetics , Meropenem , Zinc/metabolism
12.
Biochemistry ; 54(3): 734-43, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25536850

ABSTRACT

For the class A ß-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6ß position by a CH2OH group (6ß-(hydroxymethyl)penicillanic acid). The 6ß substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a ß-aminoacrylate) in 1 h for sulbactam and in 4 h for 6ß-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6ß-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6ß-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6ß-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.


Subject(s)
Imines/metabolism , Sulbactam/analogs & derivatives , beta-Lactamases/metabolism , Biocatalysis/drug effects , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/drug effects , Hydrolysis/drug effects , Kinetics , Microbial Sensitivity Tests , Normal Distribution , Solutions , Spectrum Analysis, Raman , Sulbactam/chemistry , Sulbactam/metabolism , Sulbactam/pharmacology , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/chemistry
13.
PLoS One ; 9(1): e85892, 2014.
Article in English | MEDLINE | ID: mdl-24454944

ABSTRACT

ß-Lactamases are the major reason ß-lactam resistance is seen in Gram-negative bacteria. To combat this resistance mechanism, ß-lactamase inhibitors are currently being developed. Presently, there are only three that are in clinical use (clavulanate, sulbactam and tazobactam). In order to address this important medical need, we explored a new inhibition strategy that takes advantage of a long-lived inhibitory trans-enamine intermediate. SA2-13 was previously synthesized and shown to have a lower k(react) than tazobactam. We investigated here the importance of the carboxyl linker length and composition by synthesizing three analogs of SA2-13 (PSR-4-157, PSR-4-155, and PSR-3-226). All SA2-13 analogs yielded higher turnover numbers and k(react) compared to SA2-13. We next demonstrated using protein crystallography that increasing the linker length by one carbon allowed for better capture of a trans-enamine intermediate; in contrast, this trans-enamine intermediate did not occur when the C2 linker length was decreased by one carbon. If the linker was altered by both shortening it and changing the carboxyl moiety into a neutral amide moiety, the stable trans-enamine intermediate in wt SHV-1 did not form; this intermediate could only be observed when a deacylation deficient E166A variant was studied. We subsequently studied SA2-13 against a relatively recently discovered inhibitor-resistant (IR) variant of SHV-1, SHV K234R. Despite the alteration in the mechanism of resistance due to the K→R change in this variant, SA2-13 was effective at inhibiting this IR enzyme and formed a trans-enamine inhibitory intermediate similar to the intermediate seen in the wt SHV-1 structure. Taken together, our data reveals that the C2 side chain linker length and composition profoundly affect the formation of the trans-enamine intermediate of penam sulfones. We also show that the design of SA2-13 derivatives offers promise against IR SHV ß-lactamases that possess the K234R substitution.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Heterocyclic Compounds, 2-Ring/chemistry , Penicillanic Acid/analogs & derivatives , Sulfones/chemistry , Thiazolidines/chemistry , beta-Lactamase Inhibitors , Amino Acid Substitution , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Penicillanic Acid/chemistry , Protein Binding , Structure-Activity Relationship , Tazobactam , beta-Lactam Resistance , beta-Lactamases/chemistry , beta-Lactamases/genetics
14.
J Am Chem Soc ; 135(49): 18358-69, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24219313

ABSTRACT

The inhibition of the class A SHV-1 ß-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the ß-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the ß-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 ß-lactamases.


Subject(s)
Cephalosporins/pharmacology , Sulfones/chemistry , beta-Lactamase Inhibitors , Base Sequence , Cephalosporins/chemistry , Crystallography, X-Ray , DNA Primers , Models, Molecular , Spectrometry, Mass, Electrospray Ionization
15.
Expert Opin Ther Pat ; 23(11): 1469-81, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23967802

ABSTRACT

INTRODUCTION: New ß-lactamases with ever-broadening substrate specificity are rapidly disseminating globally, thereby threatening the efficacy of our best ß-lactam antibiotics. A potential solution to this problem is the development of wide-spectrum ß-lactamase inhibitors, to be coadministered with existing and new ß-lactams. AREAS COVERED: This review covers the patent literature in the ß-lactamase inhibitor area roughly from 2010 to 2013, with prior background being provided in the cases of key inhibitors and antibiotic/inhibitor combinations. An effort has been made to identify the strong and weak points of each inhibitor and combination. EXPERT OPINION: Research in this field has become increasingly diverse, with several non-ß-lactam inhibitor classes now assuming importance. The emphasis has been on finding inhibitors of AmpC, the extended-spectrum ß-lactamases and class A and D carbapenemases that can demonstrate synergy with antibiotics against resistant Gram-negative pathogens. Progress has been made. Metallo-ß-lactamases (MBL)-mediated resistance, however, represents an unmet challenge. The author believes that it will be extremely difficult to generate a selective, commercially viable MBL inhibitor with sufficient activity against NDM-1 and that alternate design strategies will need to be employed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamase Inhibitors , Animals , Bacterial Proteins/antagonists & inhibitors , Boronic Acids/chemical synthesis , Boronic Acids/pharmacology , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/pharmacology , Drug Design , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Gram-Negative Bacteria/drug effects , Humans , Patents as Topic , beta-Lactamases
16.
PLoS One ; 7(11): e49035, 2012.
Article in English | MEDLINE | ID: mdl-23145056

ABSTRACT

Bacterial ß-lactamase enzymes are in large part responsible for the decreased ability of ß-lactam antibiotics to combat infections. The inability to overcome ß-lactamase mediated resistance spurred the development of inhibitors with penems and penam sulfones being amongst the most potent and broad spectrum mechanism-based inactivators. These inhibitors form covalent, "suicide-type" inhibitory intermediates that are attached to the catalytic S70 residue. To further probe the details of the mechanism of ß-lactamase inhibition by these novel compounds, we determined the crystal structures of SHV-1 bound with penem 1, and penam sulfones SA1-204 and SA3-53. Comparison with each other and with previously determined crystal structures of members of these classes of inhibitors suggests that the final conformation of the covalent adduct can vary greatly amongst the complex structures. In contrast, a common theme of carbonyl conjugation as a mechanism to avoid deacylation emerges despite that the penem and penam sulfone inhibitors form different types of intermediates. The detailed insights gained from this study could be used to further improve new mechanism-based inhibitors of these common class A serine ß-lactamases.


Subject(s)
Sulfones/chemistry , Thienamycins/chemistry , beta-Lactamase Inhibitors , beta-Lactamases/chemistry , Catalytic Domain , Crystallography, X-Ray , Kinetics , Meropenem , Molecular Conformation , Structure-Activity Relationship , Sulfones/pharmacology , Thienamycins/pharmacology
17.
Antimicrob Agents Chemother ; 56(11): 5687-92, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22908165

ABSTRACT

Acinetobacter baumannii is an increasingly problematic pathogen in United States hospitals. Antibiotics that can treat A. baumannii are becoming more limited. Little is known about the contributions of penicillin binding proteins (PBPs), the target of ß-lactam antibiotics, to ß-lactam-sulbactam susceptibility and ß-lactam resistance in A. baumannii. Decreased expression of PBPs as well as loss of binding of ß-lactams to PBPs was previously shown to promote ß-lactam resistance in A. baumannii. Using an in vitro assay with a reporter ß-lactam, Bocillin, we determined that the 50% inhibitory concentrations (IC(50)s) for PBP1a from A. baumannii and PBP3 from Acinetobacter sp. ranged from 1 to 5 µM for a series of ß-lactams. In contrast, PBP3 demonstrated a narrower range of IC(50)s against ß-lactamase inhibitors than PBP1a (ranges, 4 to 5 versus 8 to 144 µM, respectively). A molecular model with ampicillin and sulbactam positioned in the active site of PBP3 reveals that both compounds interact similarly with residues Thr526, Thr528, and Ser390. Accepting that many interactions with cell wall targets are possible with the ampicillin-sulbactam combination, the low IC(50)s of ampicillin and sulbactam for PBP3 may contribute to understanding why this combination is effective against A. baumannii. Unraveling the contribution of PBPs to ß-lactam susceptibility and resistance brings us one step closer to identifying which PBPs are the best targets for novel ß-lactams.


Subject(s)
Acinetobacter baumannii/chemistry , Acinetobacter/chemistry , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Penicillin-Binding Proteins/antagonists & inhibitors , beta-Lactam Resistance , Acinetobacter/enzymology , Acinetobacter baumannii/enzymology , Ampicillin/chemistry , Biological Assay , Boron Compounds/chemistry , Humans , Kinetics , Molecular Docking Simulation , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Penicillins/chemistry , Solubility , Substrate Specificity , Sulbactam/chemistry , beta-Lactamase Inhibitors , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactams/chemistry
18.
J Am Chem Soc ; 134(27): 11206-15, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22702961

ABSTRACT

The class D ß-lactamases are characterized by the presence of a carboxylated lysine in the active site that participates in catalysis. Found in Acinetobacter baumannii, OXA-24 is a class D carbapenem hydrolyzing enzyme that exhibits resistance to most available ß-lactamase inhibitors. In this study, the reaction between a 6-alkylidiene penam sulfone inhibitor, SA-1-204, in single crystals of OXA-24 is followed by Raman microscopy. Details of its reaction with SA-1-204 provide insight into the enzyme's mode of action and help define the mechanism of inhibition. When the crystal is maintained in HEPES buffer, the reaction is fast, shorter than the time scale of the Raman experiment. However, when the crystal holding solution contains 28% PEG 2000, the reaction is slower and can be recorded by Raman microscopy in real time; the inhibitor's Raman bands quickly disappear, transient features are seen due to an early intermediate, and, at approximately 2-11 min, new bands appear that are assigned to the late intermediate species. At about 50 min, bands due to all intermediates are replaced by Raman signals of the unreacted inhibitor. The new population remains unchanged indicating (i) that the OXA-24 is no longer active and (ii) that the decarboxylation of Lys84 occurred during the first reaction cycle. Using absorbance spectroscopy, a one-cycle reaction could be carried out in aqueous solution producing inactive OXA-24 as assayed by the chromogenic substrate nitrocefin. However, activity could be restored by reacting aqueous OXA-24 with a large excess of NaHCO(3), which recarboxylates Lys84. In contrast, the addition of NaHCO(3) was not successful in reactivating OXA-24 in the crystalline state; this is ascribed to the inability to create a concentration of NaHCO(3) in large excess over the OXA-24 that is present in the crystal. The finding that inhibitor compounds can inactivate a class D enzyme by promoting decarboxylation of an active site lysine suggests a novel function that could be exploited in inhibitor design.


Subject(s)
Acinetobacter baumannii/enzymology , Enzyme Inhibitors/pharmacology , beta-Lactamase Inhibitors , beta-Lactamases/metabolism , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Catalytic Domain/drug effects , Cephalosporins/metabolism , Decarboxylation/drug effects , Lysine/chemistry , Lysine/metabolism , Spectrum Analysis, Raman , beta-Lactamases/chemistry
19.
ChemMedChem ; 7(6): 1002-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22438274

ABSTRACT

The ability of bacteria to express inhibitor-resistant (IR) ß-lactamases is stimulating the development of novel inhibitors of these enzymes. The 2'ß-glutaroxypenicillinate sulfone, SA2-13, was previously designed to enhance the stabilization of the deacylation-refractory, trans-enamine inhibitory intermediate. To test whether this mode of inhibition can overcome different IR mutations, we determined the binding mode of SA2-13 through X-ray crystallography, obtaining co-crystals of the inhibitor-protein complex by soaking crystals of the IR sulfhydryl variable (SHV) ß-lactamase variants S130G and M69V with the inhibitor. The 1.45 Å crystal structure of the S130G SHV:SA2-13 complex reveals that SA2-13 is still able to form the stable trans-enamine intermediate similar to the wild-type complex structure, yet with its carboxyl linker shifted deeper into the active site in the space vacated by the S130G mutation. In contrast, data from crystals of the M69V SHV:SA2-13 complex at 1.3 Å did not reveal clear inhibitor density indicating that this IR variant disfavors the trans-enamine conformation, likely due to a subtle shift in A237.


Subject(s)
Biphenyl Compounds/chemistry , Enzyme Inhibitors/chemistry , Imidazoles/chemistry , beta-Lactamase Inhibitors , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Drug Resistance, Bacterial , Isomerism , beta-Lactamases/genetics , beta-Lactamases/metabolism
20.
Antimicrob Agents Chemother ; 56(5): 2713-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22330909

ABSTRACT

Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by ß-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two ß-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-Å resolution. 3-NPBA demonstrated a K(m) value of 1.0 ± 0.1 µM (mean ± standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-Å resolution. PSR-3-226 displayed a K(m) value of 3.8 ± 0.4 µM for KPC-2, and the inactivation rate constant (k(inact)) was 0.034 ± 0.003 s(-1). When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first ß-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Boronic Acids/chemistry , Carbapenems/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Klebsiella pneumoniae/enzymology , Sulfones/chemistry , Thiazolidines/chemistry , beta-Lactamases/chemistry , Anti-Bacterial Agents/metabolism , Carbapenems/metabolism , Catalytic Domain , Crystallography, X-Ray , Heterocyclic Compounds, 2-Ring/metabolism , Kinetics , Models, Molecular , Thiazolidines/metabolism , beta-Lactam Resistance/physiology , beta-Lactamase Inhibitors , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...