Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Parasitol ; 51(4): 279-289, 2021 03.
Article in English | MEDLINE | ID: mdl-33508331

ABSTRACT

Assays used to evaluate the transmission-blocking activity of antimalarial drugs are largely focused on their potential to inhibit or reduce the infectivity of gametocytes, the blood stages of the parasite that are responsible for the onward transmission to the mosquito vector. For this purpose, the drug is administered concomitantly with gametocyte-infected blood, and the results are evaluated as the percentage of reduction in the number of oocysts in the mosquito midgut. We report the results of a series of experiments that explore the transmission-blocking potential of two key antimalarial drugs, artesunate and sulfadoxine-pyrimethamine, when administered to mosquitoes already infected from a previous blood meal. For this purpose, uninfected mosquitoes and mosquitoes carrying a 6 day old Plasmodium relictum infection (early oocyst stages) were allowed to feed either on a drug-treated or an untreated host in a fully factorial experiment. This protocol allowed us to bypass the gametocyte stages and establish whether the drugs have a sporontocidal effect, i.e. whether they are able to arrest the ongoing development of oocysts and sporozoites, as would be the case when a mosquito takes a post-infection treated blood meal. In a separate experiment, we also explored whether a drug-treated blood meal impacted key life history traits of the mosquito relevant for transmission, and if this depended on their infection status. Our results showed that feeding on an artesunate- or sulfadoxine-pyrimethamine-treated hosts has no epidemiologically relevant effects on the fitness of infected or uninfected mosquitoes. In contrast, when infected mosquitoes fed on an sulfadoxine-pyrimethamine-treated host, we observed both a significant increase in the number of oocysts in the midgut, and a drastic decrease in both sporozoite prevalence (-30%) and burden (-80%) compared with the untreated controls. We discuss the potential mechanisms underlying these seemingly contradictory results and contend that, provided the results are translatable to human malaria, the potential epidemiological and evolutionary consequences of the current preventive use of sulfadoxine-pyrimethamine in malaria-endemic countries could be substantial.


Subject(s)
Anopheles , Antimalarials , Plasmodium falciparum/drug effects , Animals , Anopheles/parasitology , Antimalarials/pharmacology , Artesunate/pharmacology , Drug Combinations , Pyrimethamine/pharmacology , Sulfadoxine/pharmacology
2.
Parasitology ; 145(14): 1969-1978, 2018 12.
Article in English | MEDLINE | ID: mdl-29779502

ABSTRACT

Candidatus Midichloria mitochondrii is a maternally inherited bacterium of ticks with a unique intra-mitochondrial lifestyle. Here, we investigate on the evolutionary history of these associations and the degree of Midichloria-tick specificity. While previous surveys used the 16S rRNA gene as an exclusive molecular marker, we rather developed a multi-locus typing method based on four more variable housekeeping genes (groEL, rpoB, dnaK and ftsZ) and on one flagellum gene (fliC) present in Midichloria genomes. Using this method, multi-locus phylogenetic analyses revealed the structuring of a wide Midichloria genetic diversity into three distinct lineages associated with ticks. Overall, two distinct evolutionary strategies are obvious depending on lineage: two Midichloria lineages are generalists with infections acquired through horizontal transfers between distantly related tick species but one other Midichloria lineage rather show a high specificity degree to the Ixodes tick genus. This pattern suggests a capacity of certain Midichloria strains to maintain infections in only limited range of related tick species. These different infection strategies of Midichloria highlight an unexpected variability in their dependency to their tick hosts. We further conjecture that this pattern is also likely to indicate variability in their effects on ticks.


Subject(s)
Alphaproteobacteria/classification , Ixodes/microbiology , Phylogeny , Symbiosis , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Female , Genetic Variation , Host Specificity , Male , Multilocus Sequence Typing
3.
J Mol Biol ; 240(4): 294-307, 1994 Jul 22.
Article in English | MEDLINE | ID: mdl-8035457

ABSTRACT

The UvrB protein is a subunit of the UvrABC endonuclease which is involved in the repair of a large variety of DNA lesions. We have 91 isolated random uvrB mutants which are impaired in the repair of UV-damage in vivo. These mutants were classified on the basis of the ability to form normal levels of protein and the position of the mutations in the gene. The amino acid substitutions in the N-terminal part or in the C-terminal part of the UvrB protein are exclusively found in the conserved boxes of the so-called "helicase motifs" present in these parts of the protein, indicating that these motifs are essential for UvrB function. The proteins of four C-terminal mutants were purified: two mutants in motif V (E514K and G509S), one mutant in motif VI (R544H) and a double mutant in both motifs (E514K + R541H). In vitro experiments with these mutant proteins show that the helicase motifs V and VI are involved in the induction of ATP hydrolysis in the presence of (damaged) DNA and in the strand-displacement activity of the UvrA2B complex as is observed in a helicase assay. Furthermore, our results suggest that this strand-displacement activity is correlated to a local unwinding, which seems to be used to form the UvrB-DNA preincision complex.


Subject(s)
Bacterial Proteins/metabolism , DNA Helicases/metabolism , DNA Repair , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , Adenosine Triphosphate/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Base Sequence , DNA Primers , Escherichia coli/genetics , Molecular Sequence Data , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...