Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611661

ABSTRACT

S100 protein expression levels and neurofibromatosis type 2 (NF-2) mutations result in different disease courses in meningiomas. This study aimed to investigate non-invasive biomarkers of NF-2 copy number loss and S100 protein expression in meningiomas using morphological, radiomics, and deep learning-based features of susceptibility-weighted MRI (SWI). This retrospective study included 99 patients with S100 protein expression data and 92 patients with NF-2 copy number loss information. Preoperative cranial MRI was conducted using a 3T clinical MR scanner. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and subsequent registration of FLAIR to high-resolution SWI was performed. First-order textural features of SWI were extracted and assessed using Pyradiomics. Morphological features, including the tumor growth pattern, peritumoral edema, sinus invasion, hyperostosis, bone destruction, and intratumoral calcification, were semi-quantitatively assessed. Mann-Whitney U tests were utilized to assess the differences in the SWI features of meningiomas with and without S100 protein expression or NF-2 copy number loss. A logistic regression analysis was used to examine the relationship between these features and the respective subgroups. Additionally, a convolutional neural network (CNN) was used to extract hierarchical features of SWI, which were subsequently employed in a light gradient boosting machine classifier to predict the NF-2 copy number loss and S100 protein expression. NF-2 copy number loss was associated with a higher risk of developing high-grade tumors. Additionally, elevated signal intensity and a decrease in entropy within the tumoral region on SWI were observed in meningiomas with S100 protein expression. On the other hand, NF-2 copy number loss was associated with lower SWI signal intensity, a growth pattern described as "en plaque", and the presence of calcification within the tumor. The logistic regression model achieved an accuracy of 0.59 for predicting NF-2 copy number loss and an accuracy of 0.70 for identifying S100 protein expression. Deep learning features demonstrated a strong predictive capability for S100 protein expression (AUC = 0.85 ± 0.06) and had reasonable success in identifying NF-2 copy number loss (AUC = 0.74 ± 0.05). In conclusion, SWI showed promise in identifying NF-2 copy number loss and S100 protein expression by revealing neovascularization and microcalcification characteristics in meningiomas.

2.
Eur J Radiol ; 170: 111257, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134710

ABSTRACT

PURPOSE: Isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations play crucial roles in glioma biology. Such genetic information is typically obtained invasively from excised tumor tissue; however, these mutations need to be identified preoperatively for better treatment planning. The relative cerebral blood volume (rCBV) information derived from dynamic susceptibility contrast MRI (DSC-MRI) has been demonstrated to correlate with tumor vascularity, functionality, and biology, and might provide some information about the genetic alterations in gliomas before surgery. Therefore, this study aims to predict IDH and TERTp mutational subgroups in gliomas using deep learning applied to rCBV images. METHOD: After the generation of rCBV images from DSC-MRI data, classical machine learning algorithms were applied to the features obtained from the segmented tumor volumes to classify IDH and TERTp mutation subgroups. Furthermore, pre-trained convolutional neural networks (CNNs) and CNNs enhanced with attention gates were trained using rCBV images or a combination of rCBV and anatomical images to classify the mutational subgroups. RESULTS: The best accuracies obtained with classical machine learning algorithms were 83 %, 68 %, and 76 % for the identification of IDH mutational, TERTp mutational, and TERTp-only subgroups, respectively. On the other hand, the best-performing CNN model achieved 88 % accuracy (86 % sensitivity, 91 % specificity) for the IDH-mutational subgroups, 70 % accuracy (73 % sensitivity and 67 % specificity) for the TERTp-mutational subgroups, and 84 % accuracy (86 % sensitivity, 81 % specificity) for the TERTp-only subgroup using attention gates. CONCLUSIONS: DSC-MRI can be utilized to noninvasively classify IDH- and TERTp-based molecular subgroups of gliomas, facilitating preoperative identification of these genetic alterations.


Subject(s)
Brain Neoplasms , Deep Learning , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL