Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Xenobiot ; 14(1): 308-319, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535494

ABSTRACT

Heme enzyme dysfunction causes a group of diseases called porphyrias. Particularly, a decrease in porphobilinogen deaminase, involved in the third step of heme biosynthesis, leads to acute intermittent porphyria (AIP). Considering our previous works demonstrating the multiplicity of brain metabolisms affected by porphyrinogenic agents, this study aimed to elucidate whether they cause any alteration on the mitochondrial respiratory chain. The activities of respiratory chain complexes (I to IV) were measured in encephalon mitochondria of CF1 male mice receiving volatile anesthetics: isoflurane (2 mL/kg) and sevoflurane (1.5 mL/kg), ethanol (30%), allylisopropylacetamide (AIA) (350 mg/kg), and barbital (167 mg/kg). Moreover, they were compared versus animals with pathological levels of 5-aminolevulinic acid (ALA, 40 mg/kg). Complex I-III activity was induced by isoflurane and decreased by AIA, ethanol, and ALA. Complex II-III activity was increased by sevoflurane and decreased by isoflurane and AIA. Complex II activity was increased by sevoflurane and barbital and decreased by AIA, ethanol, and ALA. Complex IV activity was increased by barbital and ALA and decreased by sevoflurane. The damage to the respiratory chain by ALA could be reflecting the pathophysiological condition of patients with AIP. Better understanding the broad effect of porphyrinogenic drugs and the mechanisms acting on the onset of AIP is vital in translational medicine.

2.
Methods Protoc ; 6(3)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367997

ABSTRACT

The Multidrug Resistance protein (ABCB1, MDR1) is involved in the transport of xenobiotics and antiretroviral drugs. Some variants of the ABCB1 gene are of clinical importance; among them, exon 12 (c.1236C>T, rs1128503), 21 (c.2677G>T/A, rs2032582), and 26 (c.3435C>T, rs1045642) have a high incidence in Caucasians. Several protocols have been used for genotyping the exon 21 variants, such as allele-specific PCR-RFLP using adapted primer to generate a digestion site for several enzymes and automatic sequencing to detect the SNVs, TaqMan Allele Discrimination assay and High-Resolution Melter analysis (HRMA). The aim was to describe a new approach to genotype the three variants c.2677G>T/A for the exon 21 doing only one PCR with the corresponding primers and the digestion of the PCR product with two restriction enzymes: BrsI to identify A allele and BseYI to differentiate between G or T. An improvement of this methodology was also described. The proposal technique here described is demonstrated to be very efficient, easy, fast, reproducible, and cost-effective.

3.
Biochem Biophys Rep ; 27: 101049, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34195388

ABSTRACT

Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.

4.
Biomed Rep ; 14(2): 22, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33335728

ABSTRACT

In Argentina, porphyria cutanea tarda (PCT) is strongly associated with infection with human immunodeficiency virus (HIV); however, whether the onset of this disease is associated with HIV infection and/or the antiretroviral therapy has not been determined. The ABCB1 gene variants c.1236C>T, c.2677G>T/A and c.3435C>T affect drug efflux. The GSTT1 null, GSTM1 null and GSTP1 (c.313A>G) gene variants alter Glutathione S-transferase (GST) activity, modifying the levels of xenobiotics. The aim of the present study was to evaluate the role of genetic variants in initiation of PCT and to analyze the genetic basis of the PCT-HIV association. Control individuals, and HIV, PCT and PCT-HIV patients were recruited, PCR-restriction fragment length polymorphism was used to genotype the ABCB1 and GSTP1 variants, and multiplex PCR was used to study the GSTM1 and GSTT1 variants. The high frequency of c.3435C>T (PCT and PCT-HIV) and c.1236C>T (PCT) suggested that the onset of PCT were not specifically related to HIV infection or antiretroviral therapy for these variants. c.2677G>T/A frequencies in the PCT-HIV patients were higher compared with the other groups, suggesting that a mechanism involving antiretroviral therapy served a role in this association. PCT-HIV patients also had a high frequency of GSTT1 null and low frequency for GSTM1 null variants; thus, the genetic basis for PCT onset may involve a combination between the absence of GSTT1 and the presence of GSTM1. In conclusion, genes encoding for proteins involved in the flow and metabolism of xenobiotics may influence the PCT-HIV association. The present study is the first to investigate the possible role of GST and ABCB1 gene variants in the triggering of PCT in HIV-infected individuals, to the best of our knowledge, and may provide novel insights into the molecular basis of the association between PCT and HIV.

5.
Biochim Biophys Acta Gen Subj ; 1862(6): 1296-1305, 2018 06.
Article in English | MEDLINE | ID: mdl-29476795

ABSTRACT

BACKGROUND: Acute Intermittent Porphyria (AIP) is an inherited disease produced by a deficiency of Porphobilinogen deaminase (PBG-D). The aim of this work was to evaluate the effects of Isoflurane and Sevoflurane on heme metabolism in a mouse genetic model of AIP to further support our previous proposal for avoiding their use in porphyric patients. A comparative study was performed administering the porphyrinogenic drugs allylisopropylacetamide (AIA), barbital and ethanol, and also between sex and mutation using AIP (PBG-D activity 70% reduced) and T1 (PBG-D activity 50% diminished) mice. METHODS: The activities of 5-Aminolevulinic synthetase (ALA-S), PBG-D, Heme oxygenase (HO) and CYP2E1; the expression of ALA-S and the levels of 5-aminolevulinic acid (ALA) were measured in different tissues of mice treated with the drugs mentioned. RESULTS: Isoflurane increased liver, kidney and brain ALA-S activity of AIP females but only affected kidney AIP males. Sevoflurane induced ALA-S activity in kidney and brain of female AIP group. PBG-D activity was further reduced by Isoflurane in liver male T1; in AIP male mice activity remained in its low basal levels. Ethanol and barbital also caused biochemical alterations. Only AIA triggered neurological signs similar to those observed during human acute attacks in male AIP being the symptoms less pronounced in females although ALA-S induction was greater. Heme degradation was affected. DISCUSSION: Biochemical alterations caused by the porphyrinogenic drugs assayed were different in male and female mice and also between T1 and AIP being more affected the females of AIP group. GENERAL SIGNIFICANCE: This is the first study using volatile anaesthetics in an AIP genetic model confirming Isoflurane and Sevoflurane porphyrinogenicity.


Subject(s)
Anesthetics/pharmacology , Heme/metabolism , Hydroxymethylbilane Synthase/physiology , Models, Genetic , Porphobilinogen/pharmacology , Porphyria, Acute Intermittent/drug therapy , Volatile Organic Compounds/pharmacokinetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Porphobilinogen/chemistry , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Porphyria, Acute Intermittent/pathology
6.
Acta bioquím. clín. latinoam ; 50(4): 547-573, dic. 2016. ilus, tab
Article in Spanish | LILACS | ID: biblio-837630

ABSTRACT

Las porfirias son enfermedades metabólicas consecuencia de fallas en la biosíntesis del hemo, caracterizadas por un patrón específico de acumulación y excreción de intermediarios, responsables de su patofisiología. En las porfirias agudas el exceso de ácido d-aminolevúlico (ALA) produce una sintomatología neuroabdominal asociada al daño oxidativo por formación de especies reactivas de oxígeno (ROS), originadas por autooxidaxión del ALA. En las cutáneas, la sintomatología es producto de la acumulación de porfirinas, que como el ALA, inducen la formación de ROS. Su desencadenamiento se precipita por factores endógenos (ayuno, estrés, hormonas) y/o exógenos (fármacos), en particular algunos anestésicos. Se presenta una revisión de los estudios bioquímicos y genéticos en pacientes con diferentes porfirias obtenidos en el Centro de Investigaciones de Porfirias y Porfirinas (CIPYP), durante los últimos 38 años, que permitieron ampliar el conocimiento sobre las bases moleculares sobre estas patologías. Se describen los logros resultantes del empleo de modelos experimentales de porfiria, inducida farmacológica o genéticamente, que contribuyeron a la clasificación de algunas drogas como prohibidas para pacientes con porfiria. Finalmente, las porfirinas generadoras de ROS, y por ende inductoras de muerte celular, tienen su aplicación para combatir infecciones por organismos hemo-deficientes como Trypanosoma cruzi y también para ser utilizadas como fotosensibilizadores en la terapia fotodinámica (TFD).


Porphyrias comprise a group of metabolic disorders of the heme biosynthesis pathway resulting in a specific accumulation and excretion of intermediates which are responsible for their pathophysiology. Acute porphyrias are characterized by acute neurovisceral symptoms due to the overproduction and accumulation of d-aminolevulinic acid (ALA) which leads to an oxidative damage resulting from the formation of reactive oxygen species (ROS). In cutaneous porphyrias, the symptomatology is a result of porphyrin accumulation which also induces ROS moulding. In both cases, their clinical signs are precipitated by endogenous factors (stress, hormones, low calories intake) and/or exogenous drugs, in particular some anaesthetics. A review of the biochemical and genetic results obtained from patients with different porphyrias, diagnosed at the CIPYP during the last 38 years is presented here, aimed at obtaining additional evidence about the molecular nature of these disorders. The achievements obtained from experimental porphyria models -pharmacologically or genetically induced- are also described, which contributed to the classification of some drugs as prohibited for their use in porphyric patients. Finally, as porphyrins produce ROS and therefore cellular death, they can be used to treat infections by heme-deficient organisms like Trypanosoma cruzi and also as photosensitizers in photodynamic therapy (TFD).


As Porfirias são doenças metabólicas decorrentes de falhas na biossíntese do Hemo, caracterizadas por um padrão específico de acumulação e excreção de intermediários responsáveis de sua patofisiologia. Nas Porfirias Agudas, o excesso de ácido δ-aminolevulínico (ALA) produz uma sintomatologia neuroabdominal associada ao dano oxidativo por formação de espécies reativas de oxigênio (ROS), decorrentes da auto-oxidação do ALA. Nas Cutâneas a sintomatologia é produto da acumulação de porfirinas, que como o ALA, induzem a formação de ROS. Seu desencadeamento precipita-se por fatores endógenos (jejum, estresse, hormônios) e/ou exógenos (fármacos), especialmente alguns anestésicos. Apresenta-se uma revisão dos estudos bioquímicos e genéticos em pacientes com diferentes Porfirias obtidos no Centro de Investigações de Porfirias e Porfirinas (CIPYP), durante os últimos 38 anos, que permitiram ampliar o conhecimento sobre as bases moleculares destas patologias. Descrevem-se as conquistas resultantes do uso de modelos experimentais de Porfiria, induzida farmacológica ou geneticamente, que contribuíram à classificação de algumas drogas como proibidas para pacientes com Porfiria. Afinal, as porfirinas geradoras de ROS e, por conseguinte, indutoras de morte celular têm sua aplicação para combater infecções por organismos hemo-deficientes como Trypanosoma cruzi e também ser utilizadas como fotossensibilizadores na terapia fotodinâmica (TFD).


Subject(s)
Humans , Anesthetics , Photochemotherapy , Porphyrias , Porphyrias/metabolism , Porphyrins , Trypanosoma cruzi , Porphyria, Erythropoietic , Protoporphyria, Erythropoietic
7.
Biochem Cell Biol ; 94(4): 297-305, 2016 08.
Article in English | MEDLINE | ID: mdl-27472495

ABSTRACT

5-Aminolevulinic acid (ALA) seems to be responsible for the neuropsychiatric manifestations of acute intermittent porphyria (AIP). Our aim was to study the effect of ALA on the different metabolic pathways in the mouse brain to enhance our knowledge about the action of this heme precursor on the central nervous system. Heme metabolism, the cholinergic system, the defense enzyme system, and nitric oxide metabolism were evaluated in the encephalon of CF-1 mice receiving a single (40 mg/kg body mass) or multiple doses of ALA (40 mg/kg, every 48 h for 14 days). We subsequently found ALA accumulation in the encephalon of the mice. ALA also altered the brain cholinergic system. After one dose of ALA, a decrease in superoxide dismutase activity and a reduction in glutathione levels were detected, whereas malondialdehyde levels and catalase activity were increased. Heme oxygenase was also increased as an antioxidant response to protect the encephalon against injury. All nitric oxide synthase isoforms were induced by ALA, these changes were more significant for the inducible isoform in glial cells. In conclusion, ALA affected several metabolic pathways in mouse encephalon. Data indicate that a rapid response to oxidative stress was developed; however, with long-term intoxication, the redox balance was probably restored, thereby minimizing oxidative damage.


Subject(s)
Acetylcholinesterase/metabolism , Aminolevulinic Acid/pharmacology , Antioxidants/metabolism , Brain/metabolism , Heme/metabolism , Nitric Oxide Synthase/metabolism , Oxidative Stress/drug effects , Animals , Brain/drug effects , Brain/pathology , Male , Mice , Photosensitizing Agents/pharmacology
8.
Biomed Res Int ; 2015: 436319, 2015.
Article in English | MEDLINE | ID: mdl-25945334

ABSTRACT

The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Oxidative Stress/drug effects , Protoporphyria, Erythropoietic/drug therapy , Animals , Catalase/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chenodeoxycholic Acid/administration & dosage , Dehydrocholic Acid/administration & dosage , Deoxycholic Acid/administration & dosage , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Griseofulvin/toxicity , Humans , Lipid Peroxidation/drug effects , Mice , Porphyrins/metabolism , Protoporphyria, Erythropoietic/chemically induced , Protoporphyria, Erythropoietic/metabolism , Superoxide Dismutase/metabolism , Ursodeoxycholic Acid/administration & dosage
9.
Biochem Cell Biol ; 93(1): 102-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25386744

ABSTRACT

Brain cytochrome P450 (CYP) metabolizes a variety of drugs to produce their pharmacological effects within the brain. We have previously observed that porphyrinogenic agents altered CYP levels in brain. The aim of this work was to further study the involvement of mice brain mitochondrial and microsomal Phase I drug metabolizing system when porphyrinogenic agents, such as Enflurane, Isoflurane, allylisopropylacetamide, veronal, ethanol, and Griseofulvin were administered. To this end, CYP2E1, CYP2B1, and CYP3A4 expression were measured. NADPH cytochrome P450 reductase (CPR) expression was also determined. Western Blots were performed in microsomes and mitochondria of whole brain. Some of the drugs studied altered expression mainly in microsomes. Chronic Isoflurane augmented mitochondrial isoform, although this anaesthetic diminished microsomal expression. Ethanol and topical Griseofulvin affected expression in microsomes but not in mitochondria. CYP2E1 mitochondrial activity was induced by acute Enflurane; while the activity of the microsomal protein was enhanced in alcoholised animals. Ethanol also induced CYP2E1 expression in microsomes, although Isoflurane provoked opposite effects in mitochondria and microsomes. Expression of CPR was also induced. Several reports support an emergent role of CYP enzymes in the pathogenesis of neurological disorders, so CYP response in brain could be one of the multiples factors influencing porphyria acute attacks.


Subject(s)
Brain/drug effects , Brain/enzymology , Cytochrome P-450 Enzyme System/metabolism , Microsomes/metabolism , Mitochondria/metabolism , Animals , Cytochrome P-450 CYP2B1/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Isoenzymes/metabolism , Male , Mice
10.
Drug Metab Lett ; 5(1): 25-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21198440

ABSTRACT

Porphyrias neuropathophysiology could be related to low levels of heme as a cofactor for nitric oxide synthase (NOS). We examined how anaesthetics and other porphyrinogenic agents affect mice NOS activity and expression. Brain response was differential depending on the cellular fraction analyzed. Most of the drugs diminished cytosolic activity. Instead, isoflurane, enflurane and ethanol increased mitochondrial activity. NOS expression also depended on the drug tested. A comparative study was performed in liver. Our present and previous results indicate the widespread action of porphyrinogenic agents in brain, which could be the reason why it is difficult to establish the onset of acute porphyria neurological manifestations.


Subject(s)
Anesthetics/pharmacology , Brain/drug effects , Liver/drug effects , Nitric Oxide Synthase/biosynthesis , Porphyrias/enzymology , Anesthetics/toxicity , Animals , Brain/enzymology , Cell Fractionation , Cytosol/drug effects , Cytosol/enzymology , Enzyme Induction , Liver/enzymology , Male , Mice , Mitochondria/drug effects , Mitochondria/enzymology , Porphyrias/chemically induced
11.
Cell Mol Neurobiol ; 27(6): 717-29, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17676386

ABSTRACT

(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochrome P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that delta-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic delta-aminolevulinic acid administration. Acute delta-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic delta-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and delta-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ.


Subject(s)
Brain/metabolism , Cytochrome P-450 Enzyme System/physiology , Microsomes/metabolism , Mitochondria/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Porphyria, Acute Intermittent/chemically induced , Allylisopropylacetamide/pharmacokinetics , Aminolevulinic Acid/pharmacology , Animals , Barbital/pharmacokinetics , Brain/drug effects , Ethanol/pharmacokinetics , Griseofulvin/pharmacokinetics , Hypnotics and Sedatives/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Metabolic Detoxication, Phase I/physiology , Mice , Photosensitizing Agents/pharmacokinetics , Porphyria, Acute Intermittent/metabolism
12.
Mol Med ; 12(9-10): 259-63, 2006.
Article in English | MEDLINE | ID: mdl-17225875

ABSTRACT

The cytochrome P-450 (CYP) isoenzymes, a superfamily of heme proteins which are the terminal oxidases of the mixed function oxidases system, metabolize more than 70% of all clinically approved drugs. The highly polymorphic CYP2D6 isoform metabolizes more than 25% of most common drugs, and the phenotypes of the 70-plus allelic variants range from compromised to excessive enzymatic activity. Porphyrias are a group of inherited or acquired metabolic disorders of heme biosynthesis, due to a specific decrease in the activity of one of the enzymes of the heme pathway. Clinical signs and symptoms of porphyrias are frequently associated with exposure to precipitating agents, including clinically approved drugs. CYP enzymes, including CYP2D6, participate in the metabolism of some porphyrinogenic drugs, leading to the deregulation of heme biosynthesis. Considering that some of the drugs not recommended for use in porphyric patients are metabolized by CYP2D6, the presence of CYP2D6 polymorphisms in porphyric patients would influence the triggering of the disease when these individuals receive a precipitating agent that is metabolized by CYP2D6. To investigate CYP2D6 polymorphisms in porphyric patients, healthy Argentinean volunteers, porphyric patients, and a group of individuals with high levels of iron were studied. Results indicated that the CYP2D6*3 and CYP2D6*4 alleles, in particular, would be linked to the onset of disease. Predictive genotyping for CYP2D6 in porphyric patients holds promise as a method to improve the clinical efficacy of drug therapy and to personalize drug administration for these patients.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Polymorphism, Genetic , Porphyrias/genetics , Adolescent , Adult , Alleles , Child , Female , Gene Frequency , Genotype , Humans , Male , Middle Aged , Phenotype
13.
Int J Biochem Cell Biol ; 37(8): 1620-5, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15896668

ABSTRACT

Drugs metabolised by cytochrome P450 (CYP) such as analgesics may induce acute attacks in patients with hepatic porphyrias. In recent years, preclinical and clinical studies have suggested that cannabinoid pharmaceutical preparations may be potentially useful in the treatment of pain. The purpose of the study was to examine the effects of CP-55,940, a cannabinoid CB1 receptor agonist, on the hepatic heme metabolism in mice. To this end, hepatic activities of aminolevulinic acid synthase (ALAS), heme oxygenase (HO) and CYP levels were determined in mice treated with CP-55,940 (0.5 mg/kg/day; i.p.; 5 or 24 days). Results showed that treatment with CP-55,940 decreased CYP concentrations by 80% and increased HO activity by 158%. However, ALAS activity also decreased by 37%, suggesting that regulatory free heme pool was not modified. Our findings indicate that CP-55,940 and its metabolites do not behave as porphyrinogenic drugs and may potentially be safe for treating pain in patients with acute porphyrias.


Subject(s)
Cyclohexanols/administration & dosage , Heme/metabolism , Liver/drug effects , Receptor, Cannabinoid, CB1/agonists , Animals , Liver/enzymology , Liver/metabolism , Male , Mice
14.
Biochim Biophys Acta ; 1723(1-3): 128-34, 2005 May 25.
Article in English | MEDLINE | ID: mdl-15777621

ABSTRACT

The effects of enflurane and isoflurane on heme metabolism, its regulation, and on some parameters involved in the hepatic drug metabolising system in animals under GSH depletion were investigated. A single dose of the anaesthethics (1 ml kg(-1), i.p.) was administered to control and GSH depleted mice, animals were sacrificed 20 min after. As a consequence of GSH depletion, a significant inhibition in delta-Aminolevulinic acid synthetase activity, the first enzyme of heme biosynthesis, and a striking induction in Heme oxygenase activity, the main enzyme of heme metabolism, were observed. Cytochrome P-450 levels and the activities of P-4502E1 and glutathione S-transferase were increased. These changes in heme metabolism and drug metabolising enzyme system were not altered further by the administration of enflurane or isoflurane. These findings would indicate that the status of oxidative stress produced by GSH depletion could not be affected by these anaesthetics and/or that disturbances in heme metabolism were already too important to undergo further variations.


Subject(s)
Anesthesia, Inhalation , Glutathione/physiology , Heme/metabolism , Pharmaceutical Preparations/metabolism , 5-Aminolevulinate Synthetase/biosynthesis , Acetaminophen/pharmacology , Animals , Enflurane/pharmacology , Glutathione Transferase/metabolism , Isoflurane/pharmacology , Male , Mice
15.
Int J Biochem Cell Biol ; 36(2): 216-22, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14643887

ABSTRACT

Hepatoerythropoietic porphyria (HEP) is the homozygous form of Porphyria Cutanea Tarda (PCT), characterized by an accumulation of porphyrins due to uroporphyrinogen decarboxylase deficiency. Fluorinated volatile anaesthetics are often used to produce general anaesthesia. Anaesthesia has certainly been implicated in the triggering of acute porphyria crisis. The effects of volatile anaesthetics in a B-lymphocyte cell line established from HEP patients (LBHEP) on heme metabolism have been investigated.LBHEP cells were exposed to sodium phosphate buffer containing dissolved Enflurane, Isoflurane or Sevoflurane (10mM) during 20min. Aminolevulinate synthase (ALA-S) activity, the regulatory enzyme of heme synthesis, was 300% induced by the anaesthetics. A 25-30% diminution of porphobilinogenase (PBG-ase) activity was found when Isoflurane or Sevoflurane were added to the cells, while no significant changes were detected after Enflurane treatment. Although some oxidative stress has been induced by the anaesthetics, reflected by the 35% diminution of glutathione (GSH), no alteration in heme oxygenase (HO) activity, the enzyme involved in heme breakdown and frequently induced as a response to stress stimuli, was observed. Studies using animals inoculated with LBHEP cells were also performed. Findings here described mimic biochemical alterations in the heme pathway, which are characteristic of another hepatic porphyria, similar to those previously reported when these anaesthetics were administered to animals, and they also advertise about the possible unsafe use of these drugs in the case of hepatic non-acute porphyrias.


Subject(s)
Anesthetics, Inhalation/pharmacology , Anesthetics/pharmacology , B-Lymphocytes/drug effects , Porphyrias/pathology , 5-Aminolevulinate Synthetase/pharmacology , Ammonia-Lyases/metabolism , Animals , Enflurane/pharmacology , Heme/chemistry , Humans , Isoflurane/metabolism , Isoflurane/pharmacology , Lymphocytes/metabolism , Methyl Ethers/pharmacology , Mice , Mice, Inbred BALB C , Mutation , Oxidative Stress , Porphyrias/drug therapy , Sevoflurane , Time Factors
16.
Cell Mol Biol (Noisy-le-grand) ; 48(1): 103-10, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11929041

ABSTRACT

In central nervous system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyse acetylcholine. Diminished cholinesterase activity is known to alter several mental and psychomotor functions. The symptoms of cholinergic crisis and those observed during acute attacks of acute intermittent porphyria are very similar. The aim of this study was to investigate if there could be a link between the action of some porphyrinogenic drugs on brain and the alteration of the cholinergic system. To this end, AChE and BuChE activities were assayed in whole and different brain areas. Muscarinic acetylcholine receptor (mAChR) levels were also measured. Results obtained indicate that the porphyrinogenic drugs tested affect central cholinergic transmission. Quantification of mAChR gave quite different levels depending on the xenobiotic. Veronal administration inhibited 50% BuChE activity in whole brain, cortex and hippocampus; concomitantly cortex mAChR was 30% reduced. Acute and chronic isoflurane anaesthesia diminished BuChE activity by 70-90% in whole brain instead cerebellum and hippocampus mAChR levels were only altered by chronic enflurane anaesthesia. Differential inhibition of cholinesterases in the brain regions and their consequent effects may be of importance to the knowledge of the mechanisms of neurotoxicity of porphyrinogenic drugs.


Subject(s)
Brain/metabolism , Cholinesterases/drug effects , Porphyrias/complications , 5-Aminolevulinate Synthetase/drug effects , Acetylcholinesterase/analysis , Acetylcholinesterase/drug effects , Animals , Barbital/administration & dosage , Barbital/pharmacology , Brain/anatomy & histology , Butyrylcholinesterase/analysis , Butyrylcholinesterase/drug effects , Cholinesterases/analysis , Enflurane/administration & dosage , Enflurane/pharmacology , Ethanol/administration & dosage , Ethanol/pharmacology , Griseofulvin/administration & dosage , Griseofulvin/pharmacology , Male , Mice , Nervous System Diseases/etiology , Porphyrias/chemically induced , Receptors, Muscarinic/analysis , Receptors, Muscarinic/drug effects , Starvation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...