Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 111(46): 11873-84, 2007 Nov 22.
Article in English | MEDLINE | ID: mdl-17973463

ABSTRACT

Based on the analysis of 23 aluminum sites from 16 fluoroaluminates, the present work demonstrates the strong potential of combining accurate NMR quadrupolar parameter measurements, density functional theory (DFT)-based calculations of electric field gradients (EFG), and structure optimizations as implemented in the WIEN2k package for the structural and electronic characterizations of crystalline inorganic materials. Structure optimizations are essential for compounds whose structure was refined from usually less accurate powder diffraction data and provide a reliable assignment of the 27Al quadrupolar parameters to the aluminum sites in the studied compounds. The correlation between experimental and calculated EFG tensor elements leads to the proposition of a new value of the 27Al nuclear quadrupole moment Q(27Al) = 1.616 (+/-0.024) x 10(-29) m2. The DFT calculations provide the orientation of the 27Al EFG tensors in the crystal frame. Electron density maps support that the magnitude and orientation of the 27Al EFG tensors in fluoroaluminates mainly result from the asymmetric distribution of the Al 3p orbital valence electrons. In most cases, the definition of relevant radial and angular distortion indices, relying on EFG orientation, allows correlations between these distortions and magnitude and sign of the Vii.

2.
Inorg Chem ; 45(26): 10636-41, 2006 Dec 25.
Article in English | MEDLINE | ID: mdl-17173418

ABSTRACT

High magnetic field and high spinning frequency one- and two-dimensional one-pulse MAS 19F NMR spectra of beta-ZrF4 and CeF4 were recorded and reconstructed allowing the accurate determination of the 19F chemical shift tensor parameters for the seven different crystallographic fluorine sites of each compound. The attributions of the NMR resonances are performed using the superposition model for 19F isotropic chemical shift calculation initially proposed by Bureau et al. (Bureau, B.; Silly, G.; Emery, J.; Buzaré, J.-Y. Chem. Phys. 1999, 249, 85-104). A satisfactory reliability is reached with a root-mean-square (rms) deviation between calculated and measured isotropic chemical shift values equal to 1.5 and 3.5 ppm for beta-ZrF4 and CeF4, respectively.

3.
Inorg Chem ; 45(25): 10215-23, 2006 Dec 11.
Article in English | MEDLINE | ID: mdl-17140229

ABSTRACT

27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites.

4.
Inorg Chem ; 43(8): 2474-85, 2004 Apr 19.
Article in English | MEDLINE | ID: mdl-15074964

ABSTRACT

High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses.

5.
Solid State Nucl Magn Reson ; 25(4): 241-51, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15028274

ABSTRACT

Electric field gradients (EFG) of 23Na and 27Al in three model fluoride crystalline powders AlF3, Na3AlF6 and Na5Al3F14 were computed using the density functional based electronic structure code WIEN97 and compared to values derived from nuclear magnetic resonance (NMR). First, results of measurements of 23Na and 27Al quadrupolar parameters in AlF3, Na3AlF6 and Na5Al3F14 were revisited by using high-resolution solid-state NMR. To determine chemical shifts and quadrupolar parameters with a high precision, the experimental procedure involved magic angle spinning, satellite transition spectroscopy and multi-quanta techniques applied to the quadrupolar nuclei together with a computed reconstruction of the NMR spectra. The large discrepancies which appear between previously published results in some cases, justify the use of ab initio calculations of the corresponding EFG using the WIEN97 code based on the known structural data of the crystalline phases. The agreement obtained between these calculations and the experimental results which is better than 10% in almost all cases supports the reliability of the present NMR investigations and of the crystallographic data.

6.
Int J Biol Macromol ; 29(2): 127-36, 2001 Aug 20.
Article in English | MEDLINE | ID: mdl-11518584

ABSTRACT

The (13)C CP-MAS (Cross Polarization and Magic Angle Spinning) NMR signatures of a series of amorphous and semi-crystalline samples prepared from various starchy substrates (native potato starch, amylopectin, amylose) following different techniques of preparation (casting, freeze drying, solvent exchange) are compared. Decompositions of the C1 resonance spectra reveal the existence of four or five main types of alpha(1-4) linkages, which can be quantified. The influence of the intrinsic primary structure (linear or branched) and of the preparation procedure on conformational changes and resulting crystallinity are interpreted in terms of distributions of average glycosidic linkages dihedral angles (Phi, Psi). The role of hydration is also considered. An improved understanding at different structural levels is obtained in relation to local and intermediate range orders. Such information may be useful for the understanding of the structural evolution of a large variety of starchy substrates before or after treatments widely used in industrial processes.


Subject(s)
Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Carbohydrate Conformation , Carbon Isotopes , Crystallography, X-Ray , Macromolecular Substances , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Solanum tuberosum/chemistry
7.
Int J Biol Macromol ; 29(2): 137-43, 2001 Aug 20.
Article in English | MEDLINE | ID: mdl-11518585

ABSTRACT

In the preceding paper, we have investigated the structural heterogeneous character of a series of amorphous samples prepared from various starchy substrates (native potato starch, amylopectin and amylose) following different techniques of preparation (casting, freeze drying and solvent exchange). Spectral decompositions of the C1 resonances of the (13)C CP-MAS (Cross Polarization and Magic Angle Spinning) spectra under (1)H decoupling have shown the existence of five main types of alpha(1-4) linkages. In this part, 2D solid state NMR WISE experiments and the (13)C/(1)H magnetization transfer in CP as a local probe for both structures and dynamics were used. The (13)C CP magnetization curves versus contact time of each C1 component in each recorded spectrum were fitted with an analytic function taking into account two (1)H reservoirs. Interpretation of the characteristic times derived from fitting yields some improvements on the knowledge of the heterogeneity of the samples and on the water molecules distribution.


Subject(s)
Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Carbohydrate Conformation , Carbon Isotopes , Hydrogen , Macromolecular Substances , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Solanum tuberosum/chemistry
8.
Solid State Nucl Magn Reson ; 16(4): 291-304, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10928634

ABSTRACT

To understand the surprising behavior between the variations of the P'-P-P" angles and the correlated variations of the O'-P-O" ones, two lithium cyclohexaphosphate compounds Li6P6O18 x 3H2O and Li6P6O18 are studied by solid state nuclear magnetic resonance (NMR) spectroscopy. The two compounds exhibit the same [P6O18]6- ring anions but with 3m or 1 internal symmetry, respectively. Such symmetries induce local distortions that are exhibited by NMR spectroscopy. One-dimensional (1D) NMR gives information on structural sites of 7Li and 31P ions and the crystallographic non-equivalencies are observed. Nevertheless, in the anhydrous compound, X-ray diffraction and NMR results do not completely agree and some discrepancy exists between the number of sites observed with the first technique and the number of lines exhibited in the NMR spectra either for 7Li or 31P nuclei. This problem is elucidated by using 2D double quantum NMR spectroscopy coupled with theoretical considerations. We find that the 31P chemical shift tensor is dependent on the deviations of the O-P-O angles from those in the regular tetrahedron. Within the same empirical model, we suggest that the surprising behavior between the variations of the P'-P-P" and the ones of the O'-P-O" is related to the overall charge on the PO4 group. We also find the positions of the isotropic lines for 7Li essentially depend on the site co-ordination of this nuclei.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Crystallography, X-Ray , Lithium/chemistry , Models, Chemical , Phosphorus/chemistry
9.
Solid State Nucl Magn Reson ; 14(3-4): 181-90, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10499664

ABSTRACT

Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nu(Q) up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.


Subject(s)
Fluorides/analysis , Gallium/analysis , Magnetic Resonance Spectroscopy , Chemical Phenomena , Chemistry, Physical , Crystallization , Models, Theoretical
10.
Solid State Nucl Magn Reson ; 15(2): 79-89, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10670899

ABSTRACT

The isotropic chemical shift of 207Pb is used to perform structural investigations of crystalline fluoride compounds (PbF2, Pb2ZnF6, PbGaF5, Pb3Ga2F12 and Pb9Ga2F24) and transition metal fluoride glasses (TMFG) of the PZG family (PbF2-ZnF2-GaF3). Using 207Pb Cross Polarisation Magic Angle Spinning (CP-MAS) NMR with 19F decoupling, it is shown that the isotropic chemical shift of 207Pb varies on a large scale (1000 ppm) and that the main changes of its value are not due to the nearest neighbour fluorines but may be related to the number of next nearest neighbour (nnn) Pb2+ ions. In this way, it is demonstrated that 207Pb chemical shift is an interesting probe to investigate medium range order in either crystalline or glassy fluoride systems. The 207Pb delta(iso) parameter has been linearly correlated to the number of nnn Pb2+ ions.


Subject(s)
Fluorides/chemistry , Magnetic Resonance Spectroscopy/methods , Fluorine , Isotopes , Lead
11.
Solid State Nucl Magn Reson ; 15(2): 129-38, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10670905

ABSTRACT

Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nuQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum.


Subject(s)
Fluorides/chemistry , Gallium/chemistry , Magnetic Resonance Spectroscopy , Chemical Phenomena , Chemistry, Physical , Crystallization
SELECTION OF CITATIONS
SEARCH DETAIL
...