Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 60: 723-733, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27543176

ABSTRACT

Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δy=3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature.


Subject(s)
Electric Power Supplies , Lead/isolation & purification , Models, Theoretical , Recycling/methods , Lead/chemistry , Oxides/chemistry , Sodium Hydroxide/chemistry
2.
Waste Manag ; 33(8): 1764-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23731699

ABSTRACT

High purity electrolytic manganese dioxide (EMD) is the main raw material used for manufacturing of zinc and manganese based portable batteries (alkaline with manganese AlMn and zinc carbon Zn-C). Lately, due to the progressive depletion of MnO(2) natural resources, the quantity of artificially electrolytic produced MnO(2) has started to increase to satisfy the demand. This paper describes an electrolytic process for the simultaneous production of the following components:The electrolysis process was conducted in a specialized laboratory facility. The study was particularly focused on the following electrolysis process parameters:


Subject(s)
Electric Power Supplies , Manganese Compounds/isolation & purification , Oxides/isolation & purification , Zinc/isolation & purification , Electrolysis , Manganese Compounds/chemistry , Oxidation-Reduction , Oxides/chemistry , Refuse Disposal/methods , Sulfates/chemistry , Sulfuric Acids/chemistry , X-Ray Diffraction , Zinc/chemistry
3.
Waste Manag ; 33(3): 699-705, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23158875

ABSTRACT

Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn-C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2M H2SO4, 1h, 80°C).


Subject(s)
Electric Power Supplies , Manganese/isolation & purification , Metallurgy/methods , Refuse Disposal/methods , Zinc/isolation & purification , Solid Waste , Solubility , Sulfuric Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...