Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768353

ABSTRACT

In this study, we present an analysis of the optical response of strong coupling between SPR and labeled proteins. We demonstrate a sensing methodology that allows to evaluate the protein mass adsorbed to the gold's surface from the Rabi gap, which is a direct consequence of the strong light-matter interaction between surface plasmon polariton and dye exciton of labeled protein. The total internal reflection ellipsometry optical configuration was used for simulation of the optical response for adsorption of HSA-Alexa633 dye-labeled protein to a thin gold layer onto the glass prism. It was shown that Rabi oscillations had parabolic dependence on the number of labeled proteins attached to the sensor surface; however, for photonic-plasmonic systems in real experimental conditions, the range of the Rabi energy is rather narrow, thus it can be linearly approximated. This approach based on the strong coupling effect paves the alternative way for detection and monitoring of the interaction of the proteins on the transducer surface through the change of coupling strengths between plasmonic resonance and the protein-dye complex.


Subject(s)
Photons , Surface Plasmon Resonance , Physical Phenomena , Gold
2.
Sensors (Basel) ; 22(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36502156

ABSTRACT

In this study, the sensitivity to the refractive index changes of the ambient was studied on the uniform gold film (~50 nm) with a 1D photonic crystal (PC) from periodic five TiO2 (~110 nm)/SiO2 (~200 nm) bilayers and gold nano-bumps array produced by direct laser writing on the same sample. The optical signal sensitivity of hybrid plasmonic resonances was compared with traditional surface plasmon resonance (SPR) on a single gold layer. The influence of the strong coupling regime between Tamm plasmon polariton (TPP) and propagated plasmon polaritons in the hybrid plasmonic modes on the sensitivity of the optical was discussed. Recent studies have shown very high hybrid plasmonic mode sensitivity SHSPP ≈ 26,000 nm/RIU to the refractive index on the uniform gold layer; meanwhile, the introduction of gold lattice reduces the signal sensitivity, but increases the Q-factor of the plasmonic resonances. Despite this, the sensitivity to the ellipsometric parameters Ψ and Δ on the gold lattice was rather high due to the increased Q-factor of the resonances. The comparison of plasmonic resonance sensitivity to the refractive index changes of hybrid TPP-SPP mode on the uniform gold layer and traditional SPR have shown that hybrid plasmonic mode, due to a strong coupling effect, overcomes the SPR by about 27%.


Subject(s)
Silicon Dioxide , Surface Plasmon Resonance , Gold/chemistry , Refractometry , Photons
3.
Biosensors (Basel) ; 12(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36004980

ABSTRACT

A one-dimensional photonic crystal with an additional TiO2 layer, supporting Bloch surface waves (BSW), was used for enhanced signal sensitivity for the detection of protein interaction. To compare the optical response of BSW and photonic crystals (PC), bovine serum albumin and specific antibodies against bovine serum were used as a model system. The results obtained show the enhanced sensitivity of p- and s-BSW components for the 1D PC sample with an additional TiO2 layer. Furthermore, a higher sensitivity was obtained for the BSW component of p-polarization in the PC sample with an additional TiO2 layer, where the sensitivity of the ellipsometric parameter Ψ was five times higher and that of the Δ parameter was eight times higher than those of the PC sample. The capabilities of BSW excitations are discussed from the sensitivity point of view and from the design of advanced biosensing.


Subject(s)
Biosensing Techniques , Antibodies , Biosensing Techniques/methods , Optics and Photonics , Photons
4.
Biosensors (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34940258

ABSTRACT

Low-cost 1D plasmonic photonic structures supporting Tamm plasmon polaritons and cavity modes were employed for optical signal enhancement, modifying the commercially available quartz crystal microbalance with dissipation (QCM-D) sensor chip in a combinatorial spectroscopic ellipsometry and quartz microbalance method. The Tamm plasmon optical state and cavity mode (CM) for the modified mQCM-D sample obtained sensitivity of ellipsometric parameters to RIU of ΨTPP = 126.78 RIU-1 and ΔTPP = 325 RIU-1, and ΨCM = 264 RIU-1 and ΔCM = 645 RIU-1, respectively. This study shows that Tamm plasmon and cavity modes exhibit about 23 and 49 times better performance of ellipsometric parameters, respectively, for refractive index sensing than standard spectroscopic ellipsometry on a QCM-D sensor chip. It should be noted that for the optical biosensing signal readout, the sensitivity of Tamm plasmon polaritons and cavity modes are comparable with and higher than the standard QCM-D sensor chip. The different origin of Tamm plasmon polaritons (TPP) and cavity mode (CM) provides further advances and can determine whether the surface (TPP) or bulk process (CM) is dominating. The dispersion relation feature of TPP, namely the direct excitation without an additional coupler, allows the possibility to enhance the optical signal on the sensing surface. To the best of our knowledge, this is the first study and application of the TPP and CM in the combinatorial SE-QCM-D method for the enhanced readout of ellipsometric parameters.


Subject(s)
Biosensing Techniques , Quartz Crystal Microbalance Techniques , Photons , Refractometry , Spectrum Analysis
5.
J Colloid Interface Sci ; 594: 195-203, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33761394

ABSTRACT

During the pandemic, different methods for SARS-CoV-2 detection and COVID-19 diagnostics were developed, including antibody and antigen tests. For a better understanding of the interaction mechanism between SARS-CoV-2 virus proteins and specific antibodies, total internal reflection ellipsometry based evaluation of the interaction between SARS-CoV-2 nucleoprotein (SCoV2-rN) and anti-SCoV2-rN antibodies was performed. Results show that the appropriate mathematical model, which takes into account the formation of an intermediate complex, can be applied for the evaluation of SCoV2-rN/anti-SCoV2-rN complex formation kinetics. The calculated steric factor indicated that SCoV2-rN/anti-SCoV2-rN complex formation has very strict steric requirements. Estimated Gibbs free energy (ΔGAssoc) for SCoV-rN and anti-SCoV-rN binding was determined as -34 kJ/mol. The reported findings are useful for the design of new analytical systems for the determination of anti-SCoV2-rN antibodies and for the development of new anti-SARS-CoV-2 medications.


Subject(s)
Antibodies, Viral/chemistry , Nucleoproteins/chemistry , SARS-CoV-2 , Kinetics , Thermodynamics
6.
PeerJ ; 8: e9788, 2020.
Article in English | MEDLINE | ID: mdl-32884863

ABSTRACT

BACKGROUND: Stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) are well-characterized vital hematopoietic growth factors that regulate hematopoiesis. G-CSF and SCF synergistically exhibit a stimulatory effect on hematopoietic progenitors. The combination of G-CSF and SCF has been used for mobilization of peripheral blood progenitor cells in cancer and non-cancerous conditions. To overcome challenges connected with the administration of two cytokines, we developed two fusion proteins composed of human SCF and human G-CSF interspaced by an alpha-helix-forming peptide linker. METHODS: The recombinant proteins SCF-Lα-GCSF and GCSF-Lα-SCF were purified in three steps using an ion-exchange and mixed-mode chromatography. The purity and quantity of the proteins after each stage of purification was assessed using RP-HPLC, SDS-PAGE, and the Bradford assays. Purified proteins were identified using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and the Western blot analyses. The molecular weight was determined by size exclusion HPLC (SE-HPLC). The activity of heterodimers was assessed using cell proliferation assays in vitro. The capacity of recombinant fusion proteins to stimulate the increase of the absolute neutrophil count in rats was determined in vivo. The binding kinetics of the proteins to immobilized G-CSF and SCF receptors was measured using total internal reflection ellipsometry and evaluated by a standard Langmuir kinetics model. RESULTS: The novel SCF-Lα-GCSF and GCSF-Lα-SCF proteins were synthesized in Escherichia coli. The purity of the heterodimers reached >90% as determined by RP-HPLC. The identity of the proteins was confirmed using the Western blot and HPLC/ESI-MS assays. An array of multimeric forms, non-covalently associated dimers or trimers were detected in the protein preparations by SE-HPLC. Each protein induced a dose-dependent proliferative response on the cell lines. At equimolar concentration, the heterodimers retain 70-140% of the SCF monomer activity (p ≤ 0.01) in promoting the M-07e cells proliferation. The G-CSF moiety in GCSF-Lα-SCF retained 15% (p ≤ 0.0001) and in SCF-Lα-GCSF retained 34% (p ≤ 0.01) of the monomeric G-CSF activity in stimulating the growth of G-NFS-60 cells. The obtained results were in good agreement with the binding data of each moiety in the fusion proteins to their respective receptors. The increase in the absolute neutrophil count in rats caused by the SCF-Lα-GCSF protein corresponded to the increase induced by a mixture of SCF and G-CSF.

SELECTION OF CITATIONS
SEARCH DETAIL
...