Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 9(9): 1769-1782, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37535907

ABSTRACT

We report facially amphiphilic bile acid-based antimicrobials with a broad spectrum of activity against both bacterial and fungal pathogens and negligible detrimental effects on mammalian cells. Two lead compounds eliminated dormant subpopulations of various bacterial species, unlike conventional antibiotics. The lead compounds were also effective in eradicating biofilms of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Additionally, these compounds substantially inhibited the formation of fungal biofilms (C. albicans). Mechanistic investigations revealed the membrane-active nature and endogenous reactive oxygen species (ROS) induction ability of these compounds. Finally, no detectable resistance was developed by the bacterial strains against this class of membrane-targeting antimicrobials.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Bile Acids and Salts/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Biofilms , Candida albicans , Bacteria , Mammals
2.
Bioact Mater ; 20: 519-527, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35846842

ABSTRACT

Facial amphiphilicity is an extraordinary chemical structure feature of a variety of antimicrobial peptides and polymers. Vast efforts have been dedicated to small molecular, macromolecular and dendrimer-like systems to mimic this highly preferred structure or conformation, including local facial amphiphilicity and global amphiphilicity. This work conceptualizes Facial Amphiphilicity Index (FAI) as a numerical value to quantitatively characterize the measure of chemical compositions and structural features in dictating antimicrobial efficacy. FAI is a ratio of numbers of charges to rings, representing both compositions of hydrophilicity and hydrophobicity. Cationic derivatives of multicyclic compounds were evaluated as model systems for testing antimicrobial selectivity against Gram-negative and Gram-positive bacteria. Both monocyclic and bicyclic compounds are non-antimicrobial regardless of FAIs. Antimicrobial efficacy was observed with systems having larger cross-sectional areas including tricyclic abietic acid and tetracyclic bile acid. While low and high FAIs respectively lead to higher and lower antimicrobial efficacy, in consideration of cytotoxicity, the sweet spot is typically suited with intermediate FAIs for each specific system. This can be well explained by the synergistic hydrophobic-hydrophobic and electrostatic interactions with bacterial cell membranes and the difference between bacterial and mammalian cell membranes. The adoption of FAI would pave a new avenue toward the design of next-generation antimicrobial macromolecules and peptides.

3.
Inorg Chem ; 61(28): 10942-10949, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35797439

ABSTRACT

Colloidal quantum dots (QDs) are attractive fluorophores for bioimaging and biomedical applications because of their favorable and tunable optoelectronic properties. In this study, the native hydrophobic ligand environment of oleate-capped sphalerite CdSe/ZnS core/shell QDs was quantitatively exchanged with a set of imidazole-bearing small-molecule ligands. Inductively coupled plasma-optical emission spectroscopy and 1H NMR were used to identify and quantify three different ligand exchange processes: Z-type dissociation of the Zn(oleate)2, L-type association of the imidazole, and X-type anionic exchange of oleate with Cl-, all of which contributed to the overall ligand exchange.


Subject(s)
Cadmium Compounds , Quantum Dots , Selenium Compounds , Cadmium Compounds/chemistry , Imidazoles , Ligands , Oleic Acid , Quantum Dots/chemistry , Selenium Compounds/chemistry , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...