Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 39(11): 6957-67, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127089

ABSTRACT

PURPOSE: This study presents the implementation and experimental results of a novel technique for 4D tumor tracking using a commercially available and commonly used treatment couch and evaluates the tumor tracking accuracy in clinical settings. METHODS: Commercially available couch is capable of positioning the patient accurately; however, currently there is no provision for compensating physiological movement using the treatment couch in real-time. In this paper, a real-time couch tracking control technique is presented together with experimental results in tumor motion compensation in four dimensions (superior-inferior, lateral, anterior-posterior, and time). To implement real-time couch motion for tracking, a novel control system for the treatment couch was developed. The primary functional requirements for this novel technique were: (a) the treatment couch should maintain all previous∕normal features for patient setup and positioning, (b) the new control system should be used as a parallel system when tumor tracking would be deployed, and (c) tracking could be performed in a single direction and∕or concurrently in all three directions of the couch motion (longitudinal, lateral, and vertical). To the authors' best knowledge, the implementation of such technique to a regular treatment couch for tumor tracking has not been reported so far. To evaluate the performance of the tracking couch, we investigated the mechanical characteristics of the system such as system positioning resolution, repeatability, accuracy, and tracking performance. Performance of the tracking system was evaluated using dosimetric test as an endpoint. To investigate the accuracy of real-time tracking in the clinical setting, the existing clinical treatment couch was replaced with our experimental couch and the linear accelerator was used to deliver 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) treatment plans with and without tracking. The results of radiation dose distribution from these two sets of experiments were compared and presented here. RESULTS: The mechanical accuracies were 0.12, 0.14, and 0.18 mm in X, Y, and Z directions. The repeatability of the desired motion was within ±0.2 mm. The differences of central axis dose between the 3D-CRT stationary plan and two tracking plans with different motion trajectories were 0.21% and 1.19%. The absolute dose differences of both 3D tracking plans comparing to the stationary plan were 1.09% and 1.20%. Comparing the stationary IMRT plan with the tracking IMRT plan, it was observed that the central axis dose difference was -0.87% and the absolute difference of both IMRT plans was 0.55%. CONCLUSIONS: The experimental results revealed that the treatment couch could be successfully used for real-time tumor tracking with a high level of accuracy. It was demonstrated that 4D tumor tracking was feasible using existing couch with implementation of appropriate tracking methodology and with modifications in the control system.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy, Computer-Assisted/instrumentation , Robotics , Mechanical Phenomena , Movement , Phantoms, Imaging , Radiometry
2.
Med Phys ; 39(6Part28): 3971-3972, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519639

ABSTRACT

PURPOSE: The purpose of this study was to present a novel method for real- time tumor tracking using a commercially available robotic treatment couch, and to evaluate tumor tracking accuracy. METHODS: Commercially available robotic couches are capable of positioning patients with high level of accuracy; however, currently there is no provision for compensating tumor motion using these systems. Elekta's existing commercial couch (PreciseTM Table) was used without changing its design. To establish the real-time couch motion for tracking, a novel control system was developed and implemented. The tabletop could be moved in horizontal plane (laterally and longitudinally) using two Maxon-24V motors with gearbox combination. Vertical motion was obtained using robust 70V-Rockwell Automation motor. For vertical motor position sensing, we used Model 755A-Accu- Coder encoder. Two Baumer-ITD_01_4mm shaft encoders were used for the lateral and longitudinal motions of the couch. Motors were connected to the Advance Motion Controls (AMC) amplifiers: for the vertical motion, motor AMC-20A20-INV amplifier was used, and two AMC-Z6A8 amplifiers were applied for the lateral and longitudinal couch motions. The Galil DMC-4133 controller was connected to standard PC computer using USB port. The system had two independent power supplies: Galil PSR-12- 24-12A, 24vdc power supply with diodes for controller and 24vdc motors and amplifiers, and Galil-PS300W72 72vdc power supply for vertical motion. Control algorithms were developed for position and velocity adjustment. RESULTS: The system was tested for real-time tracking in the range of 50mm in all 3 directions (superior-inferior, lateral, anterior- posterior). Accuracies were 0.15, 0.20, and 0.18mm, respectively. Repeatability of the desired motion was within ± 0.2mm. CONCLUSIONS: Experimental results of couch tracking show feasibility of real-time tumor tracking with high level of accuracy (within sub-millimeter range). This tracking technique potentially offers a simple and effective method to minimize healthy tissues irradiation.Acknowledgement: Study supported by Elekta,Ltd. Study supported by Elekta, Ltd.

3.
Med Phys ; 39(6Part11): 3733, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28517163

ABSTRACT

PURPOSE: The purpose of this study was to investigate influence of different scanning speeds on measurements of photon beam flatness and symmetry. METHODS: Commissioning and quality assurance of linear accelerators require extensive beam measurements. To increase efficacy, we evaluated flatness, symmetry and penumbra of 6MV photon beam using the Varian-TrueBeamTM system. Scanning speeds were 0.3, 0.5, 0.75, 1, 1.5, and 2.5cm/s. Measurements were performed in water phantom (BluePhantom2 , IBA-Dosimetry) at depths of maximum dose, 5,10, and 20cm, for 10×10 cm field size. For each scanning speed and depth, measurements were repeated five times to give results sufficient statistical significance, in both crossline and inline directions. Beam flatness was calculated using variation over mean (80%), whereas symmetry was calculated using point difference quotient (IEC) algorithm. After filed scanning chamber (Wellhofer) was fully stopped, system was paused for stabilization time of 15s to avoid buildup of ripples. RESULTS: It was noticed for all measurements that minimum and maximum flatness and symmetry were recorded when scanning speeds were 0.3cm and 2.5cm, respectively. For depth of maximum dose, maximum flatness and symmetry were 0.82% and 100.58% (crossplane), and 0.94% and 100.96% (inplane). The average was 0.76% and 100.38% (SD 0.04 and 0.12) for crossplane; 0.89% and 100.87% (SD 0.04 and 0.06) for inplane measurements. As the scanning depth increased, flatness and symmetry increased, but SD for all measurements was within the same range (0.04-0.07 and 0.04-0.12). The maximum absolute difference for flatness and symmetry for maximum and minimum speed were 0.16% and 0.34%.However, for scanning speeds from 0.5-1cm/s, results were almost identical with maximum SD 0.03 for both flatness and symmetry. Use of different scanning speeds did not influence penumbra; SD was 0 for all measurements. CONCLUSIONS: This study reveals small influence of scanning speed within predefined range. Consequently, difference in measurements does not have clinical significance.

4.
Med Phys ; 39(6Part12): 3741, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28517846

ABSTRACT

PURPOSE: It is well established that using image guidance for prostate motion allows reduction of margin, dose escalation, decreased toxicity and recently improved outcomes. However, current methods only account for translational motion, not rotational variations. The purpose of this study is to assess whether rotations in anatomy lead to significant changes in the delivered dose for prostate patients. METHODS: Under an IRB approved protocol, 11 consecutive patients underwent prostate IMRT using IGRT with implanted metal-oxide semiconductor field-effect transistors (MOSFETs); the Dose Verification System (DVS) manufactured by Sicel Technologies. Two dosimeters were implanted per patient. From conebeam CT (CBCT) registration, corrections were applied to all translational errors. For rotations larger than 3 degrees, patient were repositioned and realigned to attempt to correct the rotation. Both translational and rotational errors based on the CBCT were documented. The daily DVS readings were compared to CBCT rotations about each axis (pitch, roll and yaw) and the root-mean square (RMS) rotation. RESULTS: 372 CBCT images were acquired. The correlation between rotation and DVS measurement was analyzed using linear regression. The R2 value for pitch was 0.059 and 0.144 for each dosimeter, respectively. For roll, the R2 values were 0.049 and 0.001. For yaw, the values were <0.001. For the RMS rotation, R2 was 0.034 and 0.038. As it could confound results, the angular dependence of the dosimeters was measured during commissioning and found that it was approximately 0.5% for 5 degree rotations. CONCLUSIONS: We did not find any significant correlation between prostate rotation around any axis and discrepancy in DVS reading. These results show that rotations seen clinically do not have a substantial effect on the dose delivered to the prostate. Further studies will attempt to determine at what angle rotations begin to affect the dose distribution, if at all.

5.
Phys Med Biol ; 56(5): 1299-318, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21285488

ABSTRACT

Respiratory and cardiac motions induce displacement and deformation of the tumor volumes in various internal organs. To accommodate this undesired movement and other errors, physicians incorporate a large margin around the tumor to delineate the planning target volume, so that the clinical target volume receives the prescribed radiation dose under any scenario. Consequently, a large volume of healthy tissue is irradiated and sometimes it is difficult to spare critical organs adjacent to the tumor. In this study we have proposed a novel approach to the 4D active tracking and dynamic delivery incorporating the tumor motion prediction technique. This method has been applied to the two commercially available robotic treatment couches. The proposed algorithm can predict the tumor position and the robotic systems are able to continuously track the tumor during radiation dose delivery. Therefore a precise dose is given to a moving target while the dose to the nearby critical organs is reduced to improve the patient treatment outcome. The efficacy of the proposed method has been investigated by extensive computer simulation. The tumor tracking method is simulated for two couches: HexaPOD robotic couch and ELEKTA Precise Table. The comparison results have been presented in this paper. In order to assess the clinical significance, dosimetric effects of the proposed method have been analyzed.


Subject(s)
Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Movement , Radiotherapy, Computer-Assisted/instrumentation , Robotics/instrumentation , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...