Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
iScience ; 26(12): 108440, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077142

ABSTRACT

Gondwanan elaterids, previously thought to be unrelated, include bioluminescent Campyloxenus earlier placed in bioluminescent Pyrophorinae. Genomic data suggest close relationships between Gondwanan groups. We maintain Morostomatinae and Hapatesinae and redefine Pityobiinae with Nearctic Pityobiini, Gondwanan Parablacini stat. nov., Campyloxenini stat. nov., and Tibionemini trib. nov. Their ancestors putatively underwent differentiation in Gondwana during the Cretaceous separation of southern continents. In contrast with their age, extant groups are species poor. Campyloxenus represents a recent origin of bioluminescence, no older than ∼53 my. Its large pronotal lanterns differ from Pyrophorini and resemble color patches of sympatric beetle co-mimics. This discovery highlights the fourth or fifth origin of bioluminescence in Elateroidea, alongside the lampyroid clade, click beetles Pyrophorini, Alampoides and Coctilelater in Anaissini (Pyrophorinae), and Balgus schnusei (Thylacosterninae). While our phylogenetic findings illuminate the phylogenetic aspects, the complete story awaits further field observations and in-depth genomic analyses of biochemical pathways used by bioluminescent elateroids.

2.
Mol Phylogenet Evol ; 186: 107831, 2023 09.
Article in English | MEDLINE | ID: mdl-37257796

ABSTRACT

South Pacific islands provide an ideal study system to explore patterns of speciation, specifically examining the role of dispersal versus vicariance. Dispersal is often the suggested mechanism of diversification in the South Pacific, specifically among remote island chains. Here, we provide a phylogeny of several related genera of Coenagrionidae (Odonata: Zygoptera) from the South Pacific, based on five molecular loci, in order to examine patterns of speciation in the region. We used the endemic damselfly genera Nesobasis, Nikoulabasis, and Vanuatubasis found across both Fiji and Vanuatu. Knowledge of the geologic history of the region was used to inform our understanding of the evolution of these genera. Both archipelagos used to be part of the Vitiaz arc which spanned from the Solomon Islands to Tonga and began to break apart 10-12 Ma. Results of our divergence-time estimations and biogeographic reconstructions support that the breakup of this arc acted as a significant vicariance event in the evolution of these taxa. Specifically, it led to the extant generic diversity seen in these damselflies. We find that within the archipelago of Vanuatu, that Espiritu Santo served as an important source for dispersal to other islands with Malekula acting as a stepping stone to Efate.


Subject(s)
Odonata , Animals , Phylogeny , Odonata/genetics , Geology , Fiji , Melanesia
3.
Proc Biol Sci ; 289(1979): 20220821, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35855602

ABSTRACT

We understand very little about the timing and origins of bioluminescence, particularly as a predator avoidance strategy. Understanding the timing of its origins, however, can help elucidate the evolution of this ecologically important signal. Using fireflies, a prevalent bioluminescent group where bioluminescence primarily functions as aposematic and sexual signals, we explore the origins of this signal in the context of their potential predators. Divergence time estimations were performed using genomic-scale datasets providing a robust estimate for the origin of firefly bioluminescence as both a terrestrial and as an aerial signal. Our results recover the origin of terrestrial beetle bioluminescence at 141.17 (122.63-161.17) Ma and firefly aerial bioluminescence at 133.18 (117.86-152.47) Ma using a large dataset focused on Lampyridae; and terrestrial bioluminescence at 148.03 (130.12-166.80) Ma, with the age of aerial bioluminescence at 104.97 (99.00-120.90) Ma using a complementary Elateroidea dataset. These ages pre-date the origins of all known extant aerial predators (i.e. bats and birds) and support much older terrestrial predators (assassin bugs, frogs, ground beetles, lizards, snakes, hunting spiders and harvestmen) as the drivers of terrestrial bioluminescence in beetles. These ages also support the hypothesis that sexual signalling was probably the original function of this signal in aerial fireflies.


Subject(s)
Chiroptera , Coleoptera , Animals , Fireflies , Genomics , Phylogeny
4.
PLoS One ; 17(6): e0268112, 2022.
Article in English | MEDLINE | ID: mdl-35648743

ABSTRACT

Oxygen is an important and often limiting reagent of a firefly's bioluminescent chemical reaction. Therefore, the development of the tracheal system and its subsequent modification to support the function of firefly light organs are key to understanding this process. We employ micro-CT scanning, 3D rendering, and confocal microscopy to assess the abdominal tracheal system in Photinus pyralis from the external spiracles to the light organ's internal tracheal brush, a feature named here for the first time. The abdominal spiracles in firefly larvae and pupae are of the biforous type, with a filter apparatus and appear to have an occlusor muscle to restrict airflow. The first abdominal spiracle in the adult firefly is enlarged and bears an occlusor muscle, and abdominal spiracles two through eight are small, with a small atrium and bilobed closing apparatus. Internal tracheal system features, including various branches, trunks, and viscerals, were homologized across life stages. In adults, the sexually dimorphic elaboration and increase in volume associated with tracheal features of luminous segments emphasizes the importance of gas exchange during the bioluminescent process.


Subject(s)
Coleoptera , Fireflies , Animals , Larva , Pupa , Trachea/diagnostic imaging
5.
Syst Biol ; 71(3): 526-546, 2022 04 19.
Article in English | MEDLINE | ID: mdl-34324671

ABSTRACT

Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here, we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, nonmodel insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression. [Gene flow; Odonata; phylogenomics; reticulate evolution.].


Subject(s)
Odonata , Animals , Genome , Insecta/anatomy & histology , Odonata/anatomy & histology , Odonata/genetics , Phylogeny
6.
Zookeys ; 1128: 129-169, 2022.
Article in English | MEDLINE | ID: mdl-36762242

ABSTRACT

Vanuatubasis Ober & Staniczek, 2009 is an endemic genus of damselfly found on the island archipelago of Vanuatu. Previously only three species were assigned to the genus. Here, all known species of Vanuatubasis are formally described and treated, including the association of females for known species. The following new congeners are also described: V.discontinua sp. nov., V.evelynae sp. nov., V.insularivorum sp. nov., V.kapularum sp. nov., V.nunggoli sp. nov., V.rhomboides sp. nov., and V.xanthochroa sp. nov. from material collected across six different islands. An illustrated key to both males and females of all species within Vanuatubasis is provided as well as distributions for all known species.

7.
Sci Rep ; 11(1): 17397, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462462

ABSTRACT

The coastal areas of Vanuatu are under a multitude of threats stemming from commercialization, human development, and climate change. Atyphella Olliff is a genus of firefly that includes species endemic to these coastal areas and will need protection. The research that has already been conducted was affected by accessibility due to the remote nature of the islands which left numerous knowledge gaps caused by a lack of distributional data (e.g., Wallacean shortfall). Species distribution models (SDM) are a powerful tool that allow for the modeling of the broader distribution of a taxon, even with limited distributional data available. SDMs assist in filling the knowledge gap by predicting potential areas that could contain the species of interest, making targeted collecting and conservation efforts more feasible when time, resources, and accessibility are major limiting factors. Here a MaxEnt prediction was used to direct field collecting and we now provide an updated predictive distribution for this endemic firefly genus. The original model was validated with additional fieldwork, ultimately expanding the known range with additional locations first identified using MaxEnt. A bias analysis was also conducted, providing insight into the effect that developments such as roads and settlements have on collecting and therefore the SDM, ultimately allowing for a more critical assessment of the overall model. After demonstrating the accuracy of the original model, this new updated SDM can be used to identify specific areas that will need to be the target of future conservation efforts by local government officials.


Subject(s)
Fireflies/physiology , Animals , Climate Change , Ecosystem , Species Specificity , Vanuatu
8.
Insects ; 12(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34442236

ABSTRACT

Vanuatubasis Ober and Staniczek is a genus of damselfly endemic to Vanuatu. Little is known about the distribution and general natural history of the genus. We present the results of 14 weeks of fieldwork in Vanuatu to provide a better understanding of the biology of this genus. Specifically, we tested ecological niche models to predict the presence of Vanuatubasis throughout the region and explored how water pH may play a role in their distribution and ecology. The results of this fieldwork refined our model and further predicted the presence of this genus on additional islands. We also found stream pH as a strong predictor for the presence of Vanuatubasis, with their presence in alkaline streams significantly higher (p < 0.001). The mean pH for those streams where the genus was collected was 8.44 (n = 53).

9.
Insects ; 12(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207188

ABSTRACT

Most organisms are dependent on sensory cues from their environment for survival and reproduction. Fireflies (Coleoptera: Lampyridae) represent an ideal system for studying sensory niche adaptation due to many species relying on bioluminescent communication; as well as a diversity of ecologies. Here; using transcriptomics; we examine the phototransduction pathway in this non-model organism; and provide some of the first evidence for positive selection in the phototransduction pathway beyond opsins in beetles. Evidence for gene duplications within Lampyridae are found in inactivation no afterpotential C and inactivation no afterpotential D. We also find strong support for positive selection in arrestin-2; inactivation no afterpotential D; and transient receptor potential-like; with weak support for positive selection in guanine nucleotide-binding protein G(q) subunit alpha and neither inactivation nor afterpotential C. Taken with other recent work in flies; butterflies; and moths; this represents an exciting new avenue of study as we seek to further understand diversification and constraint on the phototransduction pathway in light of organism ecology.

10.
Zootaxa ; 4934(1): zootaxa.4934.1.1, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33756770

ABSTRACT

We describe the Cephalozygoptera, a new, extinct suborder of Odonata, composed of the families Dysagrionidae and Sieblosiidae, previously assigned to the Zygoptera, and possibly the Whetwhetaksidae n. fam. The Cephalozygoptera is close to the Zygoptera, but differs most notably by distinctive head morphology. It includes 59 to 64 species in at least 19 genera and one genus-level parataxon. One species is known from the Early Cretaceous (Congqingia rhora Zhang), possibly three from the Paleocene, and the rest from the early Eocene through late Miocene. We describe new taxa from the Ypresian Okanagan Highlands of British Columbia, Canada and Washington, United States of America: 16 new species of Dysagrionidae of the existing genus Dysagrion (D. pruettae); the new genera Okanagrion (O. threadgillae, O. hobani, O. beardi, O. lochmum, O. angustum, O. dorrellae, O. liquetoalatum, O. worleyae, all new species); Okanopteryx (O. jeppesenorum, O. fraseri, O. macabeensis, all new species); Stenodiafanus (S. westersidei, new species); the new genus-level parataxon Dysagrionites (D. delinei new species, D. sp. A, D. sp. B, both new); and one new genus and species of the new family Whetwhetaksidae (Whetwhetaksa millerae).


Subject(s)
Odonata , Animals , North America
11.
Commun Biol ; 4(1): 177, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564115

ABSTRACT

Opsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster-at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.


Subject(s)
Butterflies/radiation effects , Color Perception/radiation effects , Color Vision/radiation effects , Evolution, Molecular , Insect Proteins/genetics , Light , Moths/radiation effects , Opsins/genetics , Animals , Butterflies/genetics , Butterflies/metabolism , Color Perception/genetics , Color Vision/genetics , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation , Genome , Insect Proteins/metabolism , Moths/genetics , Moths/metabolism , Opsins/metabolism , Phylogeny , Transcriptome
12.
Mol Phylogenet Evol ; 160: 107115, 2021 07.
Article in English | MEDLINE | ID: mdl-33609713

ABSTRACT

Dragonflies and damselflies are a charismatic, medium-sized insect order (~6300 species) with a unique potential to approach comparative research questions. Their taxonomy and many ecological traits for a large fraction of extant species are relatively well understood. However, until now, the lack of a large-scale phylogeny based on high throughput data with the potential to connect both perspectives has precluded comparative evolutionary questions for these insects. Here, we provide an ordinal hypothesis of classification based on anchored hybrid enrichment using a total of 136 species representing 46 of the 48 families or incertae sedis, and a total of 478 target loci. Our analyses recovered the monophyly for all three suborders: Anisoptera, Anisozygoptera and Zygoptera. Although the backbone of the topology was reinforced and showed the highest support values to date, our genomic data was unable to stronglyresolve portions of the topology. In addition, a quartet sampling approach highlights the potential evolutionary scenarios that may have shaped evolutionary phylogeny (e.g., incomplete lineage sorting and introgression) of this taxon. Finally, in light of our phylogenomic reconstruction and previous morphological and molecular information we proposed an updated odonate classification and define five new families (Amanipodagrionidae fam. nov., Mesagrionidae fam. nov., Mesopodagrionidae fam. nov., Priscagrionidae fam. nov., Protolestidae fam. nov.) and reinstate another two (Rhipidolestidae stat. res., Tatocnemididae stat. res.). Additionally, we feature the problematic taxonomic groupings for examination in future studies to improve our current phylogenetic hypothesis.


Subject(s)
Genomics , Odonata/classification , Odonata/genetics , Phylogeny , Animals , Female , Male
13.
Arthropod Struct Dev ; 59: 100995, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32977262

ABSTRACT

The leg regeneration capabilities of damselflies are understudied. Here we present the first data of regenerated limbs across a genus of damselfly based on adult specimens collected in the field to illustrate the prevalence of limb loss among nymphs. We show that this phenomenon is much more prevalent than previously thought, as 42 percent of individuals were found with regenerated limbs. Furthermore, we test for patterns within these data to begin to unravel the potential causes of limb loss in nymphal damselflies, showing that intrinsic factors such as sex and species cannot explain the patterns of limb loss pointing to environmental factors as the probable cause. We argue that Odonata limb regeneration provides a potentially unique perspective into the nymphal stage of these organisms.


Subject(s)
Odonata/physiology , Animals , Extremities/physiology , Regeneration
14.
Zootaxa ; 4722(3): zootaxa.4722.3.4, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-32230625

ABSTRACT

Additional work on the islands of Vanuatu has improved our understanding of the actual diversity of South Pacific coastal fireflies. Prior to recent fieldwork in Vanuatu, the only known lampyrid from Vanuatu was Atyphella aphrogeneia (Ballantyne), a coastal species also found in Papua New Guinea. After further examination, we determined that specimens from Vanuatu formerly classified as Atyphella aphrogeneia actually belong to an undescribed species. New species, Atyphella maritimus Saxton and Powell and Atyphella marigenous Saxton and Bybee, are described from specimens collected in Vanuatu. An updated key for coastal Atyphella in the South Pacific is provided.


Subject(s)
Fireflies , Animals
15.
CBE Life Sci Educ ; 18(4): ar58, 2019 12.
Article in English | MEDLINE | ID: mdl-31702953

ABSTRACT

Too many students reject the theory of evolution because they view it as incompatible with their religious beliefs. Some have argued that abandoning religious belief is the only way to help religious individuals accept evolution. Conversely, our data support that highlighting faith/evolution compatibility is an effective means to increase student acceptance. We surveyed students enrolled in entry-level biology courses at four religiously affiliated institutions. At each university, teachers gave students a presentation that demonstrated potential compatibility between evolution and faith within the teachings of each university's respective religious affiliation. Students were asked to evaluate their own beliefs about evolution both before and after this instruction. After instruction at each university, students showed significant gains in evolution acceptance without abandoning their religious beliefs. These results demonstrate that giving religious students the opportunity to reconcile their religious beliefs with the theory of evolution under the influence of intentional instruction on the compatibility of belief and evolution can lead to increased evolution acceptance among religious students.


Subject(s)
Biological Evolution , Biology/education , Humans , Regression Analysis , Religion , Students , Surveys and Questionnaires , Universities
16.
PLoS One ; 14(9): e0222940, 2019.
Article in English | MEDLINE | ID: mdl-31545841

ABSTRACT

Transcription factors are key regulatory elements that affect gene expression in response to specific signals, including environmental stresses such as salinity. Halophytes are specialized plants that have the ability to complete their life cycle in saline environments. In this study we have identified and characterized the evolutionary relationships of putative transcription factors (TF) in an obligate succulent halophyte, Suaeda fruticosa, that are involved in conferring salt tolerance. Using RNA-seq data we have analyzed the expression patterns of certain TF families, predicted protein-protein interactions, and analyzed evolutionary trajectories to elucidate their possible roles in salt tolerance. We have detected the top differentially expressed (DE) transcription factor families (MYB, CAMTA, MADS-box and bZIP) that show the most pronounced response to salinity. The majority of DE genes in the four aforementioned TF families cluster together on TF phylogenetic trees, which suggests common evolutionary origins and trajectories. This research represents the first comprehensive TF study of a leaf succulent halophyte including their evolutionary relationships with TFs in other halophyte and salt-senstive plants. These findings provide a foundation for understanding the function of salt-responsive transcription factors in salt tolerance and associated gene regulation in plants.


Subject(s)
Chenopodiaceae/genetics , Plant Proteins/genetics , Salt-Tolerant Plants/genetics , Transcription Factors/genetics , Amino Acid Sequence , Chenopodiaceae/metabolism , Evolution, Molecular , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Salt-Tolerant Plants/metabolism , Sequence Homology, Amino Acid , Transcription Factors/classification , Transcription Factors/metabolism
17.
Article in English | MEDLINE | ID: mdl-31501685

ABSTRACT

Despite the importance of tree-thinking and evolutionary trees to biology, no appropriately developed concept inventory exists to measure student understanding of these important concepts. To address this need, we developed a multiple-choice concept inventory consisting of 24 pairs of items, and we provide evidence to support its use among undergraduate students. A set of learning outcomes was developed to guide the creation of the concept inventory. The learning outcomes, student interviews, and student responses were used to develop and revise inventory items. Supporting evidence was gathered from traditional item analysis, exploratory factor analysis, confirmatory factor analysis, traditional reliability analyses, and comparisons to alternative assessments. Appropriate implementation and utility of the concept inventory are discussed.

18.
Evolution ; 73(5): 1045-1054, 2019 05.
Article in English | MEDLINE | ID: mdl-30734925

ABSTRACT

The convergent evolution of analogous features is an evolutionary process occurring independently across the tree of life. From the evolution of echolocation, prehensile tail, viviparity, or winged flight, environmental factors often drive this astonishing phenomenon. However, convergent evolution is not always conspicuous or easily identified. Giant damselflies count among the largest flying insects on Earth, and have astonishing ecologies including orb-web spider plucking and oviposition in phytotelmata. One species occurs in the Afrotropics and 18 species are found in the Neotropics. Convergent evolution was historically hypothesized based on the ecological and morphological affinities of these two geographically distant lineages but was not supported by earlier phylogenetic inferences supporting their monophyly. Using a molecular supermatrix approach and a large selection of outgroups, we revisit and reject the monophyly of Afrotropical and Neotropical giant damselflies that is otherwise supported by a morphological phylogeny. Molecular divergence time estimation suggests an origin of Afrotropical giant damselflies in the late Paleogene, and of Neotropical ones at the Cretaceous/Paleogene boundary, thereby rejecting a long-standing West Gondwana vicariance hypothesis. The strong ecological and morphological resemblances between these two independent lineages represents an astonishing case of Amphi-Atlantic tropical convergent evolution.


Subject(s)
Evolution, Molecular , Odonata/genetics , Odonata/physiology , Africa , Animals , Ecology , Forests , Fossils , Geography , Likelihood Functions , Models, Genetic , Phylogeny , Predatory Behavior , Sequence Analysis, DNA , South America , Time Factors
19.
PLoS One ; 13(11): e0205798, 2018.
Article in English | MEDLINE | ID: mdl-30403685

ABSTRACT

Polling data reveal a decades-long residual rejection of evolution in the United States, based on perceived religious conflict. Similarly, a strong creationist movement has been documented internationally, including in the Muslim world. Members of the Church of Jesus Christ of Latter-day Saints (LDS, Mormon), a generally conservative denomination, have historically harbored strong anti-evolution sentiments. We report here a significant shift toward acceptance, compared to attitudes 30 years earlier, by students at Brigham Young University, which is owned and operated by the LDS church. This change appears to have multiple explanations. Students currently entering the university have been exposed to a much-improved introduction to evolution during high school. More importantly, there has been a significant decrease in negative messaging from Church authorities and in its religious education system. There is also evidence that current students have been positively influenced toward evolution by their parents, a large percentage of whom were BYU students, who earlier were given a strong science education deemed compatible with the maintenance of religious belief. A pre-post comparison demonstrates that a majority of current students become knowledgeable and accepting following a course experience focused on evolutionary principles delivered in a faith-friendly atmosphere. Elements of that classroom pedagogy, intended to promote reconciliation, are presented. Our experience may serve as a case-study for prompting changes in acceptance of evolution in other conservative religious groups.


Subject(s)
Attitude , Church of Jesus Christ of Latter-day Saints , Religion , Students , Adolescent , Adult , Humans , Longitudinal Studies , Surveys and Questionnaires , United States , Young Adult
20.
Elife ; 72018 10 16.
Article in English | MEDLINE | ID: mdl-30324905

ABSTRACT

Fireflies and their luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of bioluminescence within beetles remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North American Photinus pyralis and Japanese Aquatica lateralis. To compare bioluminescent origins, we also sequenced the genome of a related click beetle, the Caribbean Ignelater luminosus, with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing hypothesis of parallel gains of bioluminescence. Our analyses support independent gains of bioluminescence in fireflies and click beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.


Subject(s)
Evolution, Molecular , Fireflies/genetics , Luciferases, Firefly/genetics , Luminescent Proteins/genetics , Animals , Coleoptera/enzymology , Coleoptera/genetics , Fireflies/enzymology , Genome, Insect/genetics , Molecular Sequence Annotation
SELECTION OF CITATIONS
SEARCH DETAIL
...