Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(4): 1243-8, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23297221

ABSTRACT

The creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers. Polysialylation gives bioscavengers with enhanced pharmacokinetics which protect mice against 4.2 LD(50) of S-(2-(diethylamino)ethyl) O-isobutyl methanephosphonothioate without perturbation of long-term behavior.


Subject(s)
Butyrylcholinesterase/chemistry , Butyrylcholinesterase/pharmacokinetics , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics , Amino Acid Sequence , Animals , Butyrylcholinesterase/administration & dosage , Butyrylcholinesterase/genetics , CHO Cells , Chemical Warfare Agents/toxicity , Cricetinae , Cricetulus , Humans , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Neuroprotective Agents/administration & dosage , Organothiophosphorus Compounds/antagonists & inhibitors , Organothiophosphorus Compounds/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Sialic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...