Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37895709

ABSTRACT

This article performs computer simulations of the change in magnetization in the ferromagnetic film when polarized electric current passes through it. The model examines multilayer structures from ferromagnetic and nonmagnetic films. A sandwich system comprises two ferromagnetic layers separated by a nonmagnetic gasket. Ferromagnetic films have different magnetic susceptibility. The first ferromagnetic film is magnetically hard and acts as a fixed layer. The second ferromagnetic film is magnetically soft, with a switched direction of magnetization. The current direction is perpendicular to the film plane (CPP geometry). Spin transfer is carried out by electrons that polarize in the first ferromagnetic film and transmit spin to the second ferromagnetic film. We use the Ising model to describe the magnetic properties of the system and the Metropolis algorithm to form the thermodynamic states of the spin system. Simulations are performed at temperatures below the Curie points for both materials. The result of computer simulation is the dependence of magnetization in the magnetically soft film on the current strength in the system. Calculations show that there is a critical value of the current at which the magnetization sign of the controlled film changes. The magnetization versus current plot is stepwise. The change in the magnetization sign is due to an increase in the polarization of the electron gas. The plot of electron gas polarization versus current is also stepwise.

2.
Opt Lett ; 48(13): 3479-3482, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390160

ABSTRACT

In this Letter we demonstrate a fundamentally new, to the best of our knowledge, concept to enhance the magnetic modulation of the surface plasmon polaritons (SPPs) by using hybrid magneto-plasmonic structures consisting of hyperbolic plasmonic metasurfaces and magnetic dielectric substrates. Our results show that the magnetic modulation of SPPs in the proposed structures can be an order of magnitude stronger than in the hybrid metal-ferromagnet multilayer structures conventionally used in active magneto-plasmonics. We believe that this effect will allow for the further miniaturization of magneto-plasmonic devices.


Subject(s)
Magnetic Phenomena , Miniaturization , Physical Phenomena
3.
Materials (Basel) ; 16(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37176309

ABSTRACT

The paper considers a nanowires 2D array located in the nodes of a square lattice. Computer simulations use the Heisenberg model and Metropolis algorithm. The array consists of small nanowires that are monodomain. The exchange interaction orders the spins within a single nanowire. Dipole-dipole forces act between neighboring nanowires. The shape of an individual nanowire affects its magnetic anisotropy. Computer simulations examine the phase transition temperature and magnetization behavior of the system. The type of magnetic moments ordering in the array of nanowires depends on the orientation of their long axis. We consider two types of systems. The nanowires' long axes are oriented perpendicular to the plane of their location in the first case. A dipole-dipole interaction results in first-type superantiferromagnetic ordering of the nanowires' magnetic moments for such orientation. The nanowires' long axes are oriented in the plane of the system in the second case. Dipole-dipole interaction results in second-type superantiferromagnetic ordering in such systems. The dependence of the phase transition temperature on the dipole-dipole interaction intensity is investigated.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296895

ABSTRACT

This article investigated the magnetic properties of a 2D nanolattice through computer modeling. A square antidote nanolattice in thin films was considered. For our computer simulation, we used the Heisenberg model. Ferromagnetic phase transition was studied for lattices with pores of various sizes. We determined the Curie temperature based on the finite-dimensional scaling theory. Using Wolf's algorithm, we simulated the behavior of the system. The dependence of the phase transition temperature on the density of spins was found to be power. Using Metropolis' algorithm, we calculated a hysteresis loop for an antidote lattice film. The hysteresis loop narrowed as the pore sizes increased. The dependence of coercive force on the size of the nanolattice obeyed the logarithmic law.

5.
Opt Lett ; 46(2): 420-423, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33449044

ABSTRACT

In this Letter, a fundamentally new concept of realization of hyperbolic plasmonic metasurfaces by anisotropic gain-loss competition is proposed, and the possibility of highly directional propagation and amplification of surface plasmon polaritons is predicted. A simple realistic configuration of such a metasurface represents the periodic array of lossy metallic slabs embedded in the gain matrix. Our results may pave the way for numerous applications ranging from integrated and highly directional quantum light emitters to nonlinear-optical frequency converters.

6.
Opt Lett ; 43(1): 26-29, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328188

ABSTRACT

This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.

7.
Nano Lett ; 16(7): 4391-5, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27348746

ABSTRACT

Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

8.
Sci Rep ; 6: 26915, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225745

ABSTRACT

Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity's imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications.

9.
Opt Lett ; 41(2): 396-9, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766723

ABSTRACT

In this Letter, we investigate a magnetic field induced by guiding plasmonic modes in graphene-coated nanowire via an inverse Faraday effect. Magnetic field distribution for different plasmonic modes has been calculated. It has been shown that a magnetic field has a vortex-like distribution for some plasmonic modes. The possibility of producing magnetic field distribution that rotates along the nanowire axis and periodically depends on azimuthal angle has been demonstrated.

10.
Opt Lett ; 40(11): 2557-60, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26030556

ABSTRACT

In this Letter, we report about magnetic field switching of plasmon polaritons propagating into a planar gyrotropic waveguide covered by two graphene layers at a deeply subwavelength scale. It is shown that applying an external magnetic field may lead to energy redistribution between two waveguide surfaces. The effect value resonantly depends on the relation between waveguide size and exciting light wavelength. A change in chemical potential of graphene layers may be used for tuning the phase shift between plasmon polaritons at near-resonant wavelengths. Evident effect may be observed at low magnetic fields (less than one tesla) for wavelengths about microns on a scale of tens of nanometers. Such an effect may be used for plasmonics, photonics. and optoelectronics devices, as well as sensing applications.

11.
Opt Lett ; 40(6): 890-3, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25768139

ABSTRACT

In the present work, change in speckle-pattern of linearly polarized light passed through graphene-covered optical fiber placed in external magnetic field is investigated. The possibility of magnetic speckle-pattern rotation suppression and inverse speckle-pattern rotation effect is shown. This effect can be controlled by a chemical potential of graphene layer, which can be changed easily by a gate voltage, for example. For quartz optical fiber at wavelength 0.633 µm, core diameter 9 µm, and fiber length 5 cm, an inverse rotation value of 17° is reached at chemical potential of graphene layer about 1 eV and magnetic field strength 30 kOe. Results of the work may be useful for different magneto-optics, opto-electronics, and photonics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...