Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176181

ABSTRACT

Alloys based on NiAl-Cr-Co (base) with complex dopants (base+2.5Mo-0.5Re-0.5Ta, base+2.5Mo-1.5Re-1.5Ta, base+2.5Mo-1.5Ta-1.5La-0.5Ru, base+2.5Mo-1.5Re-1.5Ta-0.2Ti, base+2.5Mo-1.5Re-1.5Ta-0.2Zr) were fabricated by centrifugal SHS metallurgy. The phase and impurity compositions, structure, mechanical properties, and the mechanism of high-temperature oxidation at T = 1150 °C were studied; the kinetic oxidation curves, fitting equations and parabolic rate constant were plotted. Al2O3 and Co2CrO4 were the major phases of the oxidized layer. Three layers were formed: I-the continuous Al2O3 layer with Co2CrO4 inclusions; II-the transitional MeN-Me layer with AlN inclusions; and III-the metal layer with AlN inclusions. The positive effect of thermo-vacuum treatment (TVT) on high-temperature oxidation resistance of the alloy was observed. The total weight gain by the samples after oxidative annealing decreased threefold (from 120 ± 5 g/m2 to 40 ± 5 g/m2). The phases containing Ru and Ti microdopants, which reduced the content of dissolved nitrogen and oxygen in the intermetallic phase to the values ∑O, N = 0.0145 wt.% for the base+2.5Mo-1.5Ta-1.5La-0.5Ru alloy and ∑O,N = 0.0223 wt.% for the base+2.5Mo-1.5Re-1.5Ta-0.2Ti alloy, were identified by transmission electron microscopy (TEM). In addition, with the significant high-temperature oxidation resistance, the latter alloy with Ti had the optimal combination of mechanical properties (σucs = 1644 ± 30 MPa; σys = 1518 ± 25 MPa).

2.
Materials (Basel) ; 16(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770182

ABSTRACT

This paper focuses on the microstructure, phase composition, mechanical, tribological and corrosion properties of high-entropy alloys (HEAs) in the CoCrCuFeNi system depending on copper content, which was varied from 0 to 20 at. % with an increment of 5%. CoCrCuFeNi alloys were manufactured by powder metallurgy methods: mechanical alloying and hot pressing of element mixtures. The solubility limit of copper in CoCrFeNi solid solution was found to be 9 at. %. Segregation of irregularly shaped copper grains sized 1-30 µm is observed at concentrations above this solubility limit. As copper concentration increases, the phase composition of CoCrCuFeNi alloys changes from the single phase based on FCC1 solid solution (Cu = 0-5 at. %) to the dual-phase FCC1 + FCC2 alloy (Cu = 10-20 at. %), where FCC1 is the main phase and FCC2 is the secondary copper-rich phase. Tribological tests have shown that doping the CoCrFeNi alloy with copper increased wear resistance by 23% due to solid solution hardening. As copper content rises above 20%, the content of the secondary FCC2 phase increases, while wear resistance and alloy hardness decline. An analysis of wear tracks and wear products has shown that abrasion of CoCrCuFeNi alloys occurs via the abrasive-oxidative wear mechanism. The corrosion tests of CoCrCuFeNi HEAs in 3.5% NaCl solution had demonstrated that doping the alloy with copper at low concentrations (5-10%) leads to decreasing of corrosion resistance, possibly due to the formation of undesirable oxide Cu2O along with protective Cr2O3. At high copper concentrations (15-20%) galvanic corrosion is suppressed due to coarsening of FCC2 grains and thus decreasing the specific contact surface area between the cathode (FCC2) and the anode (FCC1).

3.
Dent J (Basel) ; 10(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35877400

ABSTRACT

AIM: The present paper aims to systematize data concerning the prevalence and risk of dental erosion (DE) in adult patients with gastroesophageal reflux disease (GERD) compared to controls. MATERIALS AND METHODS: Core electronic databases, i.e., MEDLINE/PubMed, EMBASE, Cochrane, Google Scholar, and the Russian Science Citation Index (RSCI), were searched for studies assessing the prevalence and risk of DE in adult GERD patients with publication dates ranging from 1 January 1985 to 20 January 2022. Publications with detailed descriptive statistics (the total sample size of patients with GERD, the total sample size of controls (if available), the number of patients with DE in the sample of GERD patients, the number of patients with DE in the controls (if available)) were selected for the final analysis. RESULTS: The final analysis included 28 studies involving 4379 people (2309 GERD patients and 2070 control subjects). The pooled prevalence of DE was 51.524% (95 CI: 39.742-63.221) in GERD patients and 21.351% (95 CI: 9.234-36.807) in controls. An association was found between the presence of DE and GERD using the random-effects model (OR 5.000, 95% CI: 2.995-8.345; I2 = 79.78%) compared with controls. When analyzing studies that only used validated instrumental methods for diagnosing GERD, alongside validated DE criteria (studies that did not specify the methodologies used were excluded), a significant association between the presence of DE and GERD was revealed (OR 5.586, 95% CI: 2.311-13.503; I2 = 85.14%). CONCLUSION: The meta-analysis demonstrated that DE is quite often associated with GERD and is observed in about half of patients with this extremely common disease of the upper gastrointestinal tract.

4.
Materials (Basel) ; 14(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201081

ABSTRACT

The NiAl-Cr-Co-X alloys were produced by centrifugal self-propagating high-temperature synthesis (SHS) casting. The effects of dopants X = La, Mo, Zr, Ta, and Re on combustion, as well as the phase composition, structure, and properties of the resulting cast alloys, have been studied. The greatest improvement in overall properties was achieved when the alloys were co-doped with 15% Mo and 1.5% Re. By forming a ductile matrix, molybdenum enhanced strength characteristics up to the values σucs = 1604 ± 80 MPa, σys = 1520 ± 80 MPa, and εpd = 0.79%, while annealing at T = 1250 ℃ and t = 180 min improved strength characteristics to the following level: σucs = 1800 ± 80 MPa, σys = 1670 ± 80 MPa, and εpd = 1.58%. Rhenium modified the structure of the alloy and further improved its properties. The mechanical properties of the NiAl, ZrNi5, Ni0.92Ta0.08, (Al,Ta)Ni3, and Al(Re,Ni)3 phases were determined by nanoindentation. The three-level hierarchical structure of the NiAl-Cr-Co+15%Mo alloy was identified. The optimal plasma treatment regime was identified, and narrow-fraction powders (fraction 8-27 µm) characterized by 95% degree of spheroidization and the content of nanosized fraction <5% were obtained.

5.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605242

ABSTRACT

Reactive powder composites Cu-(0-15%)TiH2 containing up to 5% native Cu2O were manufactured by high energy ball milling and then hot-pressed to produce bulk nanostructured copper-matrix alloys reinforced by Cu3Ti3O inclusions. Two high-energy ball-milling (HEBM) protocols were employed for the fabrication of Cu-Ti alloys: single-stage and two-stage ball milling, resulting in an order of magnitude refinement of TiH2 particles in the reactive mixtures. Single-stage HEBM processing led to the partial retention of Ti in the microstructure of hot-pressed specimens as the α-Ti phase and formation of fine-grained (100-200 nm) copper matrix interspersed with 5-20 nm Cu3Ti3O precipitates, whereas the two-stage HEBM led to the complete conversion of TiH2 into the Cu3Ti3O phase during the hot pressing but produced a coarser copper matrix (1-2 µm) with 0.1-0.2 µm wide polycrystalline Cu3Ti3O layers on the boundaries of Cu grains. The alloy produced using single-stage HEBM was characterized by the highest strength (up to 950 MPa) and electrical conductivity (2.6 × 107 Sm/m) as well as the lowest specific wear rate (1.1 × 10-5 mm3/N/m). The tribological performance of the alloy was enhanced by the formation of Cu3Ti3O microfibers in the wear debris, which reduced the friction coefficient against the Al2O3 counter-body. The potential applications of the developed alloys are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...