Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 250(1): 121-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22350735

ABSTRACT

Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green-yellow, yellow-orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.


Subject(s)
Acridine Orange/chemistry , Amino Acids, Cyclic/pharmacology , Ethidium/chemistry , Vicia faba/drug effects , Cell Death/drug effects , Cell Membrane/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Fluorescent Dyes/chemistry , Indicators and Reagents/chemistry , Microscopy, Fluorescence/methods , Plant Roots/drug effects , Plant Roots/metabolism , Vicia faba/metabolism
2.
Protoplasma ; 250(4): 851-61, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23143313

ABSTRACT

The double fluorescence staining with acridine orange and ethidium bromide (AO/EB) revealed that treatment of Vicia faba ssp. minor seedlings with kinetin-induced programmed cell death (PCD) in root cortex cells. Kinetin-induced cell death reflected by the morphological changes of nuclei including their invagination, volume increase, chromatin condensation and degradation as well as formation of micronuclei showed by AO/EB and 4,6-diamidino-2-phenylindol staining was accompanied by changes including increase in conductivity of cell electrolytes secreted to culture media, decrease in the number of the G1- and G2-phase cells and appearance of fraction of hypoploid cells as the effect of DNA degradation without ladder formation. Decrease in the number of mitochondria and in the activity of cellular dehydrogenases, production of reactive oxygen species (ROS), appearance of small and then large lytic vacuoles and increase in the amount of cytosolic calcium ions were also observed. The PCD was also manifested by increased width and weight of apical fragments of roots as well as decreased length of cortex cells which led to shortening of the whole roots. The kinetin-induced PCD process was almost completely inhibited by adenine, an inhibitor of phosphoribosyl transferase, and mannitol, an inhibitor of ROS production. These cell-death hallmarks and pathway of this process suggested that the induction of kinetin-specific vacuolar type of death, expressed itself with similar intensity on both morphological and metabolic levels, was a transient protecting whole roots and whole seedlings against elimination.


Subject(s)
Kinetin/pharmacology , Vicia faba/drug effects , Cell Cycle/drug effects , Cell Death/drug effects , Plant Growth Regulators/pharmacology , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Seedlings/cytology , Seedlings/drug effects , Seedlings/metabolism , Vicia faba/cytology , Vicia faba/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...