Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(35): 14290-5, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23929775

ABSTRACT

Misfolded MHC class I heavy chains (MHC I HCs) are targeted for endoplasmic reticulum (ER)-associated degradation (ERAD) by the ubiquitin E3 ligase HRD1, and E2 ubiquitin conjugating enzyme UBE2J1, and represent one of the few known endogenous ERAD substrates. The mechanism by which misfolded proteins are dislocated across the ER membrane into the cytosol is unclear. Here, we investigate the requirements for MHC I ubiquitination and degradation and show that endogenous misfolded MHC I HCs are recognized in the ER lumen by EDEM1 in a glycan-dependent manner and targeted to the core SEL1L/HRD1/UBE2J1 complex. A soluble MHC I HC lacking its transmembrane domain and cytosolic tail uses the same ERAD components and is degraded as efficiently as wild-type MHC I. Unexpectedly, HRD1-dependent polyubiquitination is preferentially targeted to the ER luminal domain of full-length MHC I HCs, despite the presence of an exposed cytosolic C-terminal tail. MHC I luminal domain ubiquitination occurs before p97 ATPase-mediated extraction from the ER membrane and can be targeted to nonlysine, as well as lysine, residues. A subset of integral membrane proteins, therefore, requires an early dislocation event to expose part of their luminal domain to the cytosol, before HRD1-mediated polyubiquitination and dislocation.


Subject(s)
Endoplasmic Reticulum/metabolism , Histocompatibility Antigens Class I/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Adenosine Triphosphatases/metabolism , Base Sequence , HeLa Cells , Humans , Nuclear Proteins/metabolism , Ubiquitination
2.
EMBO J ; 31(17): 3596-606, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22863774

ABSTRACT

RNA-binding E3 ubiquitin ligases were recently identified, though their function remains unclear. While studying the regulation of the MHC class I (MHC-I) pathway, we here characterize a novel role for ubiquitin in mRNA degradation. MHC-I molecules provide ligands for both cytotoxic T-lymphocytes as well as natural killer (NK) cells, and play a central role in innate and adaptive immunity. MHC-I cell-surface expression is closely monitored by NK cells, whose killer immunoglobulin-like receptors encode MHC-I-specific activatory and inhibitory receptors, implying that MHC-I expression needs to be tightly regulated. In a functional siRNA ubiquitome screen we identified MEX-3C, a novel RNA-binding ubiquitin E3 ligase, as responsible for the post-transcriptional, allotype-specific regulation of MHC-I. MEX-3C binds the 3'UTR of HLA-A2 mRNA, inducing its RING-dependent degradation. The RING domain of MEX-3C is not required for HLA-A2 cell-surface downregulation, but regulates the degradation of HLA-A2 mRNA. We have therefore uncovered a novel post-transcriptional pathway for regulation of HLA-A allotypes and provide a link between ubiquitination and mRNA degradation.


Subject(s)
HLA-A2 Antigen/metabolism , RNA Stability , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Cell Line , HEK293 Cells , HLA-A2 Antigen/genetics , Humans , Killer Cells, Natural/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...