Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(7): e0219958, 2019.
Article in English | MEDLINE | ID: mdl-31335918

ABSTRACT

Species diversity in the genus Ulva remains understudied worldwide. Using molecular analyses we investigated the species composition, diversity, distribution, and relative frequencies of the genus Ulva along the entire coast of Jeju Island, off the southern tip of Korea. Species identification was performed for 215 samples collected from 23 sites, based on comprehensive phylogenetic and model-based species delimitation analyses using the sequences of two molecular markers, chloroplast elongation factor Tu (tufA) and nuclear rDNA internal transcribed spacer (ITS). We identified 193 specimens as nine Ulva species, 14 specimens as Blidingia spp., and eight samples undetermined, based on the combined analysis of tufA and ITS phylogenies. Two model-based approaches generally supported nine groups of Ulva species. Previously documented species complex, such as U. ohnoi-U. spinulosa and U. procera-U. linza showed discordant relationships between the two phylogenies. The occurrence of U. torta on Jeju Island was first observed, despite its existence on the mainland previously reported. Ulva australis [16 of 23 sites; 34.4% (relative frequency)], U. ohnoi (16; 21.9%), and U. procera (11; 14%) were found to be the predominant species. Our study highlights that molecular analysis is critical for species delimitation in the genus Ulva and provides fundamental information for an understanding of green-tide assemblages on the "biological hotspot" coastal ecosystem, Jeju Island in Korea. This study will also help to monitor and manage local green tides at the areas that are currently encountering rapid climate changes.


Subject(s)
Biodiversity , Phylogeny , Ulva/genetics , Chloroplast Proteins/genetics , Peptide Elongation Factors/genetics , Republic of Korea , Ulva/classification
2.
Sci Rep ; 9(1): 7757, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31123297

ABSTRACT

In recent years, drifting and inundating brown seaweed (Sargassum horneri) biomass, called 'golden tides', has frequently drifted and accumulated along the southern coastlines of Korea, causing devastating impacts on the local economy and coastal ecosystems. In this study, based on combined analyses of mitochondrial DNA cox3 gene and seven microsatellites, we investigated the genetic makeup of the floating S. horneri populations (N = 14) in comparison to Korean benthic populations (N = 5), and tracked their genetic sources. Given a shared mtDNA haplotype and oceanic circulation systems, the floating populations may have been originated from the southeastern coast of China (e.g. Zhoushan, Zhejiang province). Population structure analyses with microsatellites revealed two distinct genetic clusters, each comprising floating and benthic populations. High levels of inter-population differentiation were detected within Korean benthic samples. The floating populations from the same periods during a 2015-2018 year were genetically more different from one another than those from different periods. These results suggest that the floating populations might be of multiple genetic sources within geographic origin(s). This study will inform management efforts including the development of "S. horneri blooming forecasting system", which will assist in mitigating ecological and economic damages on the Korean coastal ecosystems in the future.


Subject(s)
DNA, Mitochondrial/genetics , Sargassum/genetics , Sargassum/metabolism , Biomass , China , Ecosystem , Genetics, Population/methods , Haplotypes/genetics , Microsatellite Repeats/genetics , Oceans and Seas , Republic of Korea , Seaweed/genetics
3.
BMC Evol Biol ; 18(1): 52, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29642844

ABSTRACT

BACKGROUND: Life history characteristics are considered important factors influencing the evolutionary processes of natural populations, including the patterns of population genetic structure of a species. The sister species Cottus hangiongensis and C. koreanus are small bottom-dwelling freshwater sculpin fishes from South Korea that display marked life history divergence but are morphologically nearly indistinguishable. Cottus hangiongensis evolved an 'amphidromous' life history with a post-hatching pelagic larval phase. They spawn many small eggs in the low reaches of rivers, and hatched larvae migrate to the sea before returning to grow to maturity in the river mouth. In contrast, C. koreanus evolved a 'fluvial' landlocked type with benthic larvae. They release a smaller number of larger eggs, and the larvae undergo direct development, remaining benthic in the upstream rivers throughout their entire lives. We tested whether there were differences in patterns and levels of within-population genetic diversities and spatial population structure between the two closely related Korean sculpins using mitochondrial DNA control region sequences and seven nuclear microsatellite loci. RESULTS: The combined analyses of both marker sets revealed that C. hangiongensis harboured considerably higher levels of within-population genetic diversities (e.g. haplotype/allelic richness, heterozygosities) than C. koreanus. In contrast, the fluvial sculpin exhibited noticeably more spatial population structure than did the amphidromous sculpin, as suggested by pairwise FST statistics. The finding that C. hangiongensis individuals comprised a single random mating population across the east-flowing river basins in the Korean Peninsula, whereas C. koreanus individuals comprised genetically discrete individual populations, was further supported by an individual-based Bayesian population assignment and also factorial correspondence analyses. CONCLUSIONS: The higher genetic diversity, but lower population structure, of the amphidromous sculpin relative to the fluvial sculpin may have resulted from its greater larval dispersal and also possibly, higher fecundity accompanied by an amphidromous life history. Hence, we conclude that contrasting early life histories - including the presence or absence of the pelagic larval phase - may have led to divergent patterns of within-population genetic diversities and spatial population structure between the sister Cottus species following speciation from a common ancestor of marine sculpin.


Subject(s)
Genetic Variation , Perciformes/classification , Perciformes/genetics , Animals , Bayes Theorem , Biological Evolution , DNA, Mitochondrial/genetics , Genetics, Population , Larva/genetics , Microsatellite Repeats , Phylogeny , Republic of Korea , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...