Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Urology ; 83(2): 510.e1-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24360063

ABSTRACT

OBJECTIVE: To investigate nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity in Madin-Darby canine kidney (MDCK) cells and the production of reactive oxygen species on exposure to oxalate (Ox) or calcium oxalate (CaOx) crystals. METHODS: Monolayers of confluent Madin-Darby canine kidney cells were exposed to 100, 300, 500 µmol, 1 mmol Ox or 33, 66, 132 µg/cm(2) CaOx crystals for 15 minutes, 30 minutes, 1 hour, 2 hours, or 3 hours. After specified periods of exposure to Ox and CaOx crystals, lactate dehydrogenase release, trypan blue exclusion, activation of NADPH oxidase, and superoxide production were determined using standard procedures. The production of Nox4, a membrane associated subunit of the NADPH oxidase enzyme, was determined by western blot analysis. RESULTS: Exposure to Ox and CaOx crystals leads to time- and concentration-dependent activation of NADPH oxidase. Western blot analysis showed an increase in the production of Nox4. The production of superoxide also changed in a time- and concentration-dependent manner, with maximum increases after 30-minute exposure to the highest concentrations of Ox and CaOx crystals. Longer exposures did not change the results or resulted in decreased activities. Exposure to higher concentrations also caused increased lactate dehydrogenase release and trypan blue exclusion indicating cell damage. CONCLUSION: Results indicate that cells of the distal tubular origin are equipped with NADPH oxidase that is activated by exposures to Ox and CaOx crystals. Higher concentrations of both lead to cell injury, most probably through the increased reactive oxygen species production by the exposed cells.


Subject(s)
Calcium Oxalate/pharmacology , Madin Darby Canine Kidney Cells/drug effects , NADPH Oxidases/drug effects , NADPH Oxidases/physiology , NADP/drug effects , NADP/physiology , Animals , Cells, Cultured , Crystallization , Dogs , Oxalates/pharmacology
2.
Nephrol Dial Transplant ; 26(6): 1778-85, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21079197

ABSTRACT

BACKGROUND: Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits. METHODS: Human renal epithelial-derived cell line, HK-2, was exposed to 100 µmol Ox or 66.7 µg/cm(2) CaOx monohydrate crystals for 6, 12, 24 or 48 h. After exposure, the cells and media were processed to determine activation of NADPH oxidase, production of superoxide and 8-isoprostane (8IP), and release of lactate dehydrogenase (LDH). RT-PCR was performed to determine mRNA expression of NADPH subunits p22(phox), p40(phox), p47(phox), p67(phox) and gp91(phox) as well as Rac-GTPase. RESULTS: Exposure to Ox and CaOx crystals resulted in increase in LDH release, production of 8-IP, NADPH oxidase activity and production of superoxide. Exposure to CaOx crystals resulted in significantly higher NADPH oxidase activity, production of superoxide and LDH release than Ox exposure. Exposure to Ox and CaOx crystals altered the expression of various subunits of NADPH oxidase. More consistent were increases in the expression of membrane-bound p22(phox) and cytosolic p47(phox). Significant and strong correlations were seen between NADPH oxidase activity, the expression of p22(phox) and p47(phox), production of superoxide and release of LDH when cells were exposed to CaOx crystals. The expressions of neither p22(phox) nor p47(phox) were significantly correlated with increased NADPH oxidase activity after the Ox exposure. CONCLUSIONS: As hypothesized, exposure to Ox or CaOx crystals leads to significant increases in the expression of p22(phox) and p47(phox), leading to activation of NADPH oxidase. Increased NADPH oxidase activity is associated with increased superoxide production and lipid peroxidation. Different pathways appear to be involved in the stimulation of renal epithelial cells by exposure to Ox and CaOx crystals.


Subject(s)
Calcium Oxalate/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Kidney/drug effects , Kidney/enzymology , NADPH Oxidases/metabolism , Oxalates/pharmacology , Blotting, Western , Cells, Cultured , Humans , Kidney/cytology , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation , NADPH Oxidases/genetics , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism
3.
Urol Res ; 37(1): 1-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19005647

ABSTRACT

Since hypercalciuria is a common feature of idiopathic calcium oxalate (CaOx) nephrolithiasis, renal epithelial cells of stone patients are exposed to various crystals in the presence of high calcium. This study was performed to determine the effect of high calcium levels on CaOx crystal-induced cell injury. We exposed human renal epithelial cell line, HK2 in vitro to CaOx monohydrate crystals at a concentration of 133 microg/cm(2) for 1, 3, 6 or 12 h in the presence or absence of 5 or 10 mM/L calcium Ca(++). We determined the release of lactate dehydrogenase as marker of injury and hydrogen peroxide (H(2)O(2)) and 8-isoprostane (8-IP) as sign of oxidative stress. Cells were also examined after trypan blue and nuclear DNA staining with 4',6-diamidino-2-phenylindole to determine their membrane integrity and apoptosis respectively. Exposure of cells to 5 or 10 mM/L of Ca(++,) for up-to 6 h, resulted in increased trypan blue and DAPI staining and production of H(2)O(2). Similarly an exposure to CaOx crystals also resulted in increased trypan blue and DAPI staining and H(2)O(2) production. An exposure to 5 mM/L Ca or CaOx crystals also resulted in increased production of 8-IP. A combination of the two treatments, Ca and CaOx crystals, did not show anymore changes than exposure to high Ca or CaOx crystals alone, except in the case of a longer exposure of 12 h. Longer exposures of 12 h resulted in cells sloughing from the substrate. These results indicate that exposure to high levels of Ca or CaOx crystals is injurious to renal epithelial cells but the two do not appear to work synergistically. On the other hand, results of our earlier studies suggest that oxalate and CaOx crystals work in synergy, i.e., CaOx crystals are more injurious in the presence of high oxalate. Perhaps Ox and CaOx crystals activate different biochemical pathways while Ca and CaOx crystals affect the identical pathways.


Subject(s)
Calcium Oxalate/toxicity , Calcium/toxicity , Kidney/drug effects , Kidney/injuries , Apoptosis/drug effects , Calcium Oxalate/chemistry , Cell Line , Cell Survival/drug effects , Crystallization , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Drug Interactions , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Hydrogen Peroxide/metabolism , Hypercalciuria/complications , Hypercalciuria/metabolism , Kidney/metabolism , Kidney/pathology , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation/drug effects , Nephrolithiasis/etiology , Nephrolithiasis/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
4.
J Colloid Interface Sci ; 325(2): 594-601, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18619606

ABSTRACT

Adhesion forces between the calcium oxalate monohydrate (COM, whewellite) crystal and the layer of the epithelial kidney cells have been directly measured under buffer solutions by using atomic force microscope (AFM). Two renal epithelial lines, MDCK (a collecting duct line) and LLC-PK1 (a proximal tubular line), were used. All experiments were conducted in buffer solutions containing additional Ca(2+) and Mg(2+) ions in the various concentrations. For MDCK-cells, the obtained values of the adhesion force were in the range 0.12-0.51 nN and 0.12-0.20 nN for Ca(2+) and Mg(2+), respectively. No adhesion force (larger than 0.05 nN) has been found for LLC-PK1 cells. The "critical" concentrations of ions, near which the adhesion force (for MDCK-cells) was maximal, were found to be 100 mM. The "critical" concentration of ions and the tendency of the adhesion forces with the changing ions concentration, confirm earlier results of Lieske et al. [J.C. Lieske, G. Farell, S. Deganello, Urol. Res. 32 (2004) 117-123], in which the affinity (rather than the adhesion force) between the COM micro-crystals and the layer of the MDCK-cells were measured, calculating the radioactive signal of radioactive (14)C COM-crystals stuck to the cells. We believe that the aggregation of the COM crystals does not occur in the bulk urine due to short travel time through the nephron. If so, the kidney stone formation is determined by COM-seeding on the tubules walls. The further growth of the stone on the seed can take practically unlimited time because the COM crystal is practically is not soluble in water or urine solutions. The value of the adhesion force can be useful for evaluation of the adhesion energy or probability of the COM-aggregates to stick to the kidney epithelium under the urine flow. This probability is calculated taking into account the adhesion force, F(ad), and hydrodynamic driving force of the flow. This probability reflects the opportunity of the small aggregates to grow and form the kidney stones.


Subject(s)
Calcium Chloride/pharmacology , Calcium Oxalate/metabolism , Cations, Divalent/pharmacology , Cell Adhesion/drug effects , Epithelial Cells/metabolism , Kidney/cytology , Magnesium Chloride/pharmacology , Animals , Cell Line , Dogs , Epithelial Cells/cytology , Epithelial Cells/drug effects , Kidney Calculi/etiology , LLC-PK1 Cells , Microscopy, Atomic Force , Models, Biological , Swine , Thermodynamics
5.
J Urol ; 180(1): 379-87, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18499159

ABSTRACT

PURPOSE: Kidney stone formation is associated with the deposition of hydroxyapatite as subepithelial plaques or tubular deposits in the renal papillae. We investigated the effect of renal epithelial exposure to hydroxyapatite crystals in vitro to develop an insight into the pathogenesis of kidney stones. MATERIALS AND METHODS: NRK52E cells (No. CRL-1571, ATCC) were exposed to 67 or 133 microg/cm(2) hydroxyapatite (No. 21223, Sigma-Aldrich) or calcium oxalate monohydrate crystals (No. 27609, BDH Industries, Poole, United Kingdom). In some studies cells were also exposed to crystals from the basal side. After 3 or 6 hours of exposure medium was analyzed for lactate dehydrogenase, 8-isoprostane and H(2)O(2). Medium collected after cell exposure on the apical side was also analyzed for the production of monocyte chemoattractant protein-1 and prostaglandin E2. Cells were stained with DAPI to determine apoptotic activity and examined by scanning electron microscopy to observe crystal-cell interaction. RESULTS: Cell exposure to hydroxyapatite resulted in H(2)O(2) and 8-isoprostane production as well as in lactate dehydrogenase release. Apical exposure appeared more provocative and injurious than basal exposure. Exposure to hydroxyapatite for 6 hours resulted in increased apoptotic activity. Apical exposure also resulted in increased monocyte chemoattractant protein-1 and prostaglandin E2 production. CONCLUSIONS: Cell exposure to hydroxyapatite crystals induced oxidative stress and lipid peroxidation. It caused up-regulation of the inflammation mediators that may be responsible for the kidney inflammation in patients with stones that is associated with tubular hydroxyapatite deposition. It may also have a role in the eruption of subepithelial Randall's plaques to the papillary surface.


Subject(s)
Hydroxyapatites , Kidney Calculi/etiology , Cells, Cultured , Humans , Hydroxyapatites/metabolism , Kidney/metabolism , Kidney Calculi/metabolism , Reactive Oxygen Species , Urothelium/metabolism
6.
J Urol ; 178(5): 2191-6, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17870111

ABSTRACT

PURPOSE: Patients with calcium oxalate kidney stones are advised to decrease the consumption of foods that contain oxalate. We hypothesized that a cutback in dietary oxalate would lead to a decrease in the urinary excretion of oxalate and decreased stone recurrence. We tested the hypothesis in an animal model of calcium oxalate nephrolithiasis. MATERIALS AND METHODS: Hydroxy-L-proline (5%), a precursor of oxalate found in collagenous foods, was given with rat chow to male Sprague-Dawley rats. After 42 days rats in group 1 continued on hydroxy-L-proline, while those in group 2 were given chow without added hydroxy-L-proline for the next 21 days. Food and water consumption as well as weight were monitored regularly. Once weekly urine was collected and analyzed for creatinine, calcium, oxalate, lactate dehydrogenase, 8-isoprostane and H(2)O(2). Urinary pH and crystalluria were monitored. Rats were sacrificed at 28, 42 and 63 days, respectively. Renal tissue was examined for crystal deposition by light microscopy. RESULTS: Rats receiving hydroxy-L-proline showed hyperoxaluria, calcium oxalate crystalluria and nephrolithiasis, and by day 42 all contained renal calcium oxalate crystal deposits. Urinary excretion of lactate dehydrogenase, 8-isoprostane and H(2)O(2) increased significantly. After hydroxy-L-proline was discontinued in group 2 there was a significant decrease in urinary oxalate, 8-isoprostane and H(2)O(2). Half of the group 2 rats appeared to be crystal-free. CONCLUSIONS: Dietary sources of oxalate can induce hyperoxaluria and crystal deposition in the kidneys with associated degradation in renal biology. Eliminating oxalate from the diet decreases not only urinary oxalate, but also calcium oxalate crystal deposits in the kidneys and improves their function.


Subject(s)
Calcium Oxalate/toxicity , Dietary Supplements/toxicity , Hydroxyproline/toxicity , Nephrolithiasis/urine , Animals , Calcium Oxalate/pharmacokinetics , Creatinine/urine , Disease Models, Animal , Follow-Up Studies , Hydrogen-Ion Concentration , Hydroxyproline/pharmacokinetics , Hyperoxaluria/chemically induced , Hyperoxaluria/urine , Kidney/ultrastructure , Male , Microscopy, Electron, Scanning , Nephrolithiasis/chemically induced , Rats , Rats, Sprague-Dawley , Urine/chemistry
7.
BJU Int ; 100(4): 891-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17550416

ABSTRACT

OBJECTIVE: To determine the differences in cell responses to synthetic and biological crystals of calcium oxalate (CaOx) and brushite MATERIALS AND METHODS: Nephrolithiasis depends on crystal retention within the kidneys, often promoted by crystal attachment to the injured renal epithelium; studies often use various crystals that might be injurious to cells and cause the exposure of crystal binding molecules on cell surfaces, thus promoting crystal attachment and retention. The synthetic crystals used in these studies might be more injurious than the biological crystals naturally produced in the kidneys and that form kidney stones. We exposed the renal epithelial cell line NRK 52E in vitro to CaOx or brushite crystals at 67 or 133 microg/cm(2) for 3 or 6 h. Synthetic crystals were purchased and the biocrystals were obtained by pulverizing CaOx and brushite stones. We determined the release of lactate dehydrogenase (LDH), hydrogen peroxide (H(2)O(2)) and 8-isoprostane (8-IP), and monocyte chemoattractant protein-1 (MCP-1), as markers of injury, oxidative stress and inflammation, respectively. Cells were also examined after trypan blue staining to determine their membrane integrity. We also examined crystals of CaOx by scanning electron microscopy both in the native state as well as after decalcification. RESULTS: Exposure to both the synthetic and biological crystals resulted in a significant increase in LDH release and trypan blue staining, as a sign of crystal-induced injury. There was increased production of H(2)O(2) and 8-IP, suggesting the development of oxidative stress. In addition MCP-1 production was also significantly increased. However, the synthetic crystals caused significantly higher increases in all the indicators than the biological crystals. CONCLUSIONS: These results indicate that even though both synthetic and naturally produced biocrystals invoke a response from the renal epithelial cells, the latter are significantly less injurious and inflammatory. Exposure to low concentrations of these crystals alone might not invoke an inflammatory response, cause the uncovering of crystal binding molecules on epithelial cell surfaces, and promote crystal attachment and retention.


Subject(s)
Calcium Oxalate/adverse effects , Kidney Calculi/chemistry , Animals , Calcium Oxalate/pharmacology , Calcium Phosphates/adverse effects , Calcium Phosphates/pharmacology , Cells, Cultured , Humans , Microscopy, Electron , Oxidative Stress/physiology , Rats , Urothelium/drug effects
8.
J Colloid Interface Sci ; 300(1): 131-40, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16677664

ABSTRACT

AFM interaction force measurements have been performed between calcium oxalate monohydrate crystal (COM) colloidal probes and monolayers of renal epithelial cells (on a polymer substrate) in artificial urine (AU) solutions. The adhesion force was measured for the COM/MDCK cell interaction, while no adhesion force was found for the COM/LLC-PK(1) cell interaction. Long-range repulsive forces for both lines of cells were measured in the range of 2-3 mum. After removal of the cell from the substrate by the AU flow, the basal membrane (BM), with a thickness of 100-200 nm, remained on the substrate. In this case, the shorter-range repulsive forces were found on the extending (approaching) portion of force/indentation curves. Similar to the COM/MDCK cell interaction, the retracting portions of curves for COM/basal membranes have shown the existence of the attractive force of adhesion for the interaction of COM with a BM of MDCK cells, while no adhesion was found for COM/BM LLC-PK(1) cells interaction. No adhesion force was found for the interaction of a BM (of any cells) with the silicon nitride tip. Besides the hydrodynamic reasons, the adhesion difference between LLC-PK(1) and MDCK cells possibly explains the preferential deposition of crystals only in collecting ducts (lined with MDCK-type cells) and the lack of the crystal deposition in the proximal tubules (lined with LLC-PK(1)-type cells). Previous treatments of cells with oxalate alone increased the adhesion force COM/BM MDCK; however, even after oxalate treatment there was small or no adhesion between COM and BM LLC-PK(1) cells. Note that the adhesion force for COM/BM MDCK is practically independent of the probe velocity, i.e., does not have the viscous origin. Evaluation of the adhesion energy shows that this force should be related to the ionic or hydrogen bonds of samples.


Subject(s)
Calcium Oxalate/metabolism , Epithelial Cells/metabolism , Kidney Calculi/etiology , Kidney/cytology , Adhesiveness , Animals , Cell Communication , Cell Line , Dogs , Kidney Tubules , Microscopy, Atomic Force
9.
Urol Res ; 34(1): 26-36, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16397773

ABSTRACT

Under severe hyperoxaluric conditions calcium oxalate crystals often deposit in the renal interstitium and produce localized inflammation. We have proposed that renal epithelial cells exposed to CaOx crystals produce chemoattractants such as monocyte chemoattractant protein-1 (MCP-1). MCP-1 synthesis is mediated by reactive oxygen species (ROS). HK-2 cells of human renal epithelial line were exposed to CaOx crystals for different lengths of time. The culture media was tested for cell injury marker LDH, and subjected to enzyme-linked immunosorbent assay to determine the secretion of MCP-1 protein. Cell expression of MCP-1 was assessed by Western blot analysis. Gene expression was determined by reverse transcriptase-polymerase chain reaction. The data clearly showed that the HK-2 cells express MCP-1 gene and protein. The MCP-1 mRNA expression was increased following exposure to CaOx crystals, which was reduced upon treatment with free radical scavengers, catalase and superoxide dismutase. Results indicate that CaOx crystals strongly induce MCP-1 synthesis and secretion by the HK-2 cells and production is mediated by intracellular ROS production. Based on these and other data, antioxidant therapy and blockade of rennin-angiotensin system may prove beneficial for the prevention of end stage renal disease caused by hyperoxaluria and CaOx crystal deposition.


Subject(s)
Calcium Oxalate/pharmacology , Chemokine CCL2/metabolism , Nephritis, Interstitial/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Blotting, Western , Cell Line , Chemokine CCL2/genetics , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/cytology , Epithelial Cells/metabolism , Free Radical Scavengers/metabolism , Gene Expression/physiology , Humans , Kidney/cytology , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Nephritis, Interstitial/immunology , Oxidative Stress/physiology , RNA, Messenger/metabolism , Superoxides/metabolism
10.
Urol Res ; 33(6): 448-52, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16317535

ABSTRACT

Free radical formation plays a major role in shock wave lithotripsy induced renal damage. Moreover, previous studies suggest that free radicals may also promote de novo calcium oxalate crystallization of previously damaged urothelium. Citrate is a known inhibitor of renal stone formation and has also been used as a free radical scavenger. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of two free radical scavengers, citrate and vitamin E, on the prevention of the shock wave-induced free radical surge. Suspensions of MDCK cells were placed in containers for shock wave exposure. Six groups of six containers each were examined: (a) no scavengers 0 shocks, (b) no scavengers 100 shocks, (c) citrate 0 shocks, (d) citrate 100 shocks, (e) vitamin E 0 shocks, (f) vitamin E 100 shocks. An unmodified HM3 was used to deliver 100 shocks at 24 kV. The cell groups that were not shocked acted as the control group and were handled identically, except for the lack of shock wave exposure. After shock wave administration, the containers were emptied and cell suspensions were immediately centrifuged. The supernatant was examined for lactate dehydrogenase (LDH) and 8-isoprostane (8-IP), markers of cellular injury and free radical formation, respectively. Intracellular LDH uniformly increased in all groups exposed to shock wave energy. Similarly, 8-IP increased in all shocked groups. However, the 8-IP increase was significantly reduced when the free radical scavengers were employed. As citrate is a well-known inhibitor of calcium nephrolithiasis, its mechanism of action may be further enhanced, based on its ability to reduce free radical formation, by a protective effect on the urothelium. These data further support the use of citrate based medications during the peri-operative period of shock wave lithotripsy, not only to inhibit stone formation and facilitate fragment passage, but also to reduce the incidence of shock wave induced renal damage. Further studies are warranted to clinically test this hypothesis.


Subject(s)
Citric Acid/pharmacology , Free Radicals/metabolism , Lithotripsy/adverse effects , Vitamin E/pharmacology , Animals , Cell Line , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Dogs , In Vitro Techniques , Kidney/drug effects , Kidney/injuries , Kidney/metabolism , L-Lactate Dehydrogenase/biosynthesis , Lipid Peroxidation/drug effects , Models, Biological
11.
Urol Res ; 33(6): 440-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16307291

ABSTRACT

Oxalate is a toxic end product of metabolism largely because of its propensity to crystallize and form calcium oxalate, which is insoluble at physiologic pH and often deposits at very unfortunate sites, notably the kidneys. In the current study, we investigated the oxalate-induced injury and up-regulation of monocyte-chemoattractant protein-1 (MCP-1) in HK-2 cells, a proximal tubular epithelial cell line derived from normal human kidney. The cells were exposed to oxalate ions for different lengths of time. The culture media was tested for LDH release, a cell injury marker. mRNA was isolated from the cells and subjected to reverse transcriptase-polymerase chain reaction. The data showed that oxalate exposure resulted in cell injury in a time and concentration dependent manner. The MCP-1 mRNA increased following exposure to oxalate and was reduced upon treatment with free radical scavengers, catalase and superoxide dismutase. These data support the importance of reactive oxygen species in the induction of expression of MCP-1 in renal epithelial cells. To our knowledge, this is the first report of MCP-1 expression and its upregulation by oxalate exposure in HK-2 cells.


Subject(s)
Chemokine CCL2/genetics , Oxalic Acid/toxicity , Reactive Oxygen Species/metabolism , Base Sequence , Cell Line , DNA, Complementary/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , L-Lactate Dehydrogenase/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Superoxides/metabolism , Up-Regulation/drug effects
12.
Nephrol Dial Transplant ; 20(5): 870-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15755756

ABSTRACT

BACKGROUND: Our earlier studies have demonstrated upregulation of monocyte chemoattractant protein-1 (MCP-1) in NRK52E rat renal epithelial cells by exposure to oxalate (Ox) ions and crystals of calcium oxalate monohydrate (COM) or the brushite (Br) form of calcium phosphate. The upregulation was mediated by reactive oxygen species (ROS). This study was performed to investigate whether NADPH oxidase is involved in ROS production. METHODS: Confluent cultures of NRK52E cells were exposed to Ox ions or COM and Br crystals. They were exposed for 1, 3, 6, 12, 24 and 48 h for isolation of MCP-1 mRNA and 24 h for enzyme-linked immunosorbent assay (ELISA) to determine the secretion of protein into the culture medium. We also investigated the effect of free radical scavenger, catalase, and the NADPH oxidase inhibitor diphenyleneiodium (DPI) chloride, on the Ox- and crystal-induced expression of MCP-1 mRNA and protein. The transcription of MCP-1 mRNA in the cells was determined using real-time polymerase chain reaction. Hydrogen peroxide and 8-isoprostane were measured to investigate the involvement of ROS. RESULTS: Exposure of NRK52E cells to Ox ions as well as the crystals resulted in increased expression of MCP-1 mRNA and production of the chemoattractant. Treatment with catalase reduced the Ox- and crystal-induced expression of both MCP-1 mRNA and protein. DPI reduced the crystal-induced gene expression and protein production but not Ox-induced gene expression and protein production. CONCLUSIONS: Exposure to Ox ions, and COM and Br crystals stimulates a ROS-mediated increase in MCP-1 mRNA expression and protein production. Reduction in ROS production, lipid peroxidation, low-density lipoprotein release, and inducible MCP-1 gene and protein in the presence of DPI indicates an involvement of NADPH oxidase in the production of ROS.


Subject(s)
Calcium Oxalate/pharmacology , Calcium Phosphates/pharmacology , Chemokine CCL2/genetics , Gene Expression Regulation/drug effects , Onium Compounds/pharmacology , Oxalates/pharmacology , Animals , Cells, Cultured , Chemokine CCL2/biosynthesis , L-Lactate Dehydrogenase/metabolism , Lipid Peroxidation , NADPH Oxidases/metabolism , RNA, Messenger/analysis , Rats , Reactive Oxygen Species , Up-Regulation
13.
J Urol ; 173(2): 640-6, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15643280

ABSTRACT

PURPOSE: Oxalate and calcium oxalate (CaOx) crystals are injurious to renal epithelial cells. The injury is caused by the production of reactive oxygen species (ROS). Citrate is a well-known inhibitor of CaOx crystallization and as such it is one of the major therapeutic agents prescribed. Since citrate increases cellular reduced nicotinamide adenine dinucleotide phosphate and glutathione (GSH), we hypothesized that exogenously administered citrate should act as an antioxidant and protect cells from oxalate induced injury. MATERIALS AND METHODS: We exposed LLC-PK1 and MDCK cells to 500 microM/ml oxalate or 150 mug/cm calcium oxalate crystals for 30, 60 and 180 minutes with or without 3 mg/ml citrate in the medium. We determined cell viability by lactate dehydrogenase release and trypan blue exclusion, ROS involvement by changes in hydrogen peroxide and GSH, and lipid peroxidation by quantifying 8-isoprostane. RESULTS: The presence of citrate was associated with significant decrease in lactate dehydrogenase release (p <0.001) and staining with trypan blue (p <0.05). In addition, there was a significant increase in GSH (p <0.005) and a decrease in the production of hydrogen peroxide (p <0.05) and 8-isoprostane (p <0.0005) secretion into the culture medium when citrate was present in the medium. CONCLUSIONS: Citrate protects cells from oxalate and CaOx crystal induced injury by preventing lipid peroxidation through a decrease in ROS production. The results provide additional data for the beneficial role of citrate therapy for CaOx nephrolithiasis.


Subject(s)
Citric Acid/therapeutic use , Kidney/drug effects , Oxalates/adverse effects , Oxidative Stress/drug effects , Calcium Oxalate/adverse effects , Cells, Cultured , Crystallization , Urothelium
14.
Kidney Int ; 64(4): 1283-91, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12969146

ABSTRACT

BACKGROUND: Crystal formation and retention are critical events for the formation of kidney stones. Oxalate and calcium oxalate (CaOx) crystals are injurious to renal epithelium, and membranes of injured cells promote crystal adherence and retention. Calcium phosphate (CaP) is the most common crystal in both urine and stones, most likely to form in the early segments of the nephron and can nucleate CaOx in a metastable solution. We hypothesized that CaP can also injure the renal epithelial cells. METHODS: We exposed proximal tubular origin line derived from pig proximal tubules (LLC-PK1), and collecting duct origin Madin-Darby canine kidney (MDCK) cell lines to various concentrations of Brushite (Br) crystals and investigated staining with Trypan Blue and the release of lactate dehydrogenase (LDH) into the medium as an indicator of injury. In order to determine the involvement of reactive oxygen species, we also measured LDH release in the presence of superoxide dismutase (SOD) and production of hydrogen peroxide (H2O2) and 8-isoprostane (8-IP) in the presence of the catalase. RESULTS: Exposure to Br crystals was associated with LDH release by both cell types, induced the production of H2O2 and 8-IP. Presence of SOD and catalase reduced LDH release as well as staining with trypan blue. Catalase was also associated with reduced production of H2O2 and 8-IP. CONCLUSION: Brushite crystals are injurious to cells of both the proximal tubules as well as collecting ducts. Injury is mediated by reactive oxygen species. We propose that CaP crystals can independently interact with renal epithelium, promote sites for crystal attachment, and then either grow into mature CaP stones or create sites for CaOx crystal nucleation, retention, and stone development.


Subject(s)
Calcium Phosphates/pharmacology , Kidney Calculi/chemically induced , Kidney/drug effects , Kidney/pathology , Reactive Oxygen Species/metabolism , Animals , Catalase/pharmacology , Cell Line , Coloring Agents , Dinoprost/analogs & derivatives , Dinoprost/pharmacology , Dogs , Drug Synergism , Epithelium/drug effects , Epithelium/pathology , Hydrogen Peroxide/metabolism , Kidney/metabolism , L-Lactate Dehydrogenase/metabolism , LLC-PK1 Cells , Staining and Labeling , Superoxide Dismutase/pharmacology , Swine , Trypan Blue
SELECTION OF CITATIONS
SEARCH DETAIL
...