Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 12: 1327418, 2024.
Article in English | MEDLINE | ID: mdl-38562145

ABSTRACT

Ehrlichia chaffeensis: TRP120 is a multifunctional effector that acts as a ligand mimic to activate evolutionary conserved eukaryotic signaling pathways Notch, Wnt, Hedgehog and Hippo. In addition, TRP120 is also a HECT E3 ubiquitin ligase known to ubiquitinate several host cell regulatory proteins (FBW7, PCGF5 and ENO-1) for degradation. We previously determined that TRP120 ubiquitinates the Notch negative regulator, FBW7, to maintain Notch signaling and promote infection. In this study, we investigated a potential mechanism used by Ehrlichia chaffeensis to maintain Hippo and Wnt signaling by ubiquitinating the tumor suppressor, adenomatous polyposis coli (APC), a negative regulator of Wnt and Hippo signaling. We determined that APC was rapidly degraded during E. chaffeensis infection despite increased APC transcription. Moreover, RNAi knockdown of APC significantly increased E. chaffeensis infection and coincided with increased active Yap and ß-catenin in the nucleus. We observed strong nuclear colocalization between TRP120 and APC in E. chaffeensis-infected THP-1 cells and after ectopic expression of TRP120 in HeLa cells. Additionally, TRP120 interacted with both APC full length and truncated isoforms via co-immunoprecipitation. Further, TRP120 ubiquitination of APC was demonstrated in vitro and confirmed by ectopic expression of a TRP120 HECT Ub ligase catalytic site mutant. This study identifies APC as a TRP120 HECT E3 Ub ligase substrate and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading tumor suppressor APC to positively regulate Hippo and Wnt signaling.

2.
Infect Immun ; 91(9): e0008523, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37530530

ABSTRACT

Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and ß-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.


Subject(s)
Ehrlichia chaffeensis , Hippo Signaling Pathway , Glucose Transporter Type 1/metabolism , Ligands , Apoptosis Regulatory Proteins , bcl-2-Associated X Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ehrlichia chaffeensis/genetics
3.
Infect Immun ; 91(9): e0000223, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37594275

ABSTRACT

Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Humans , X-Linked Inhibitor of Apoptosis Protein/genetics , HeLa Cells , Ligands , Apoptosis , Caspases , Ehrlichia chaffeensis/genetics
4.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945589

ABSTRACT

Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and ß-catenin activation induced by E. chaffeensis, rTRP120 and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors (Yap and TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, TRP120 Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased BCL-xL and decreased Bax levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in levels of GLUT1 and BCL-xL, and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimetic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.

5.
bioRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711597

ABSTRACT

Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary: Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.

6.
PLoS Pathog ; 18(5): e1010345, 2022 05.
Article in English | MEDLINE | ID: mdl-35576232

ABSTRACT

Ehrlichia chaffeensis (E. chaffeensis) has evolved eukaryotic ligand mimicry to repurpose multiple cellular signaling pathways for immune evasion. In this investigation, we demonstrate that TRP120 has a novel repetitive short linear motif (SLiM) that activates the evolutionarily conserved Hedgehog (Hh) signaling pathway to inhibit apoptosis. In silico analysis revealed that TRP120 has sequence and functional similarity with Hh ligands and a candidate Hh ligand SLiM was identified. siRNA knockdown of Hh signaling and transcriptional components significantly reduced infection. Co-immunoprecipitation and surface plasmon resonance demonstrated that rTRP120-TR interacted directly with Hh receptor Patched-2 (PTCH2). E. chaffeensis infection resulted in early upregulation of Hh transcription factor GLI-1 and regulation of Hh target genes. Moreover, soluble recombinant TRP120 (rTRP120) activated Hh and induced gene expression consistent with the eukaryotic Hh ligand. The TRP120-Hh-SLiM (NPEVLIKD) induced nuclear translocation of GLI-1 in THP-1 cells and primary human monocytes and induced a rapid and expansive activation of Hh pathway target genes. Furthermore, Hh activation was blocked by an α-TRP120-Hh-SLiM antibody. TRP120-Hh-SLiM significantly increased levels of Hh target, anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and siRNA knockdown of BCL-2 dramatically inhibited infection. Blocking Hh signaling with the inhibitor Vismodegib, induced a pro-apoptotic cellular program defined by decreased mitochondria membrane potential, significant reductions in BCL-2, activation of caspase 3 and 9, and increased apoptotic cells. This study reveals a novel E. chaffeensis SLiM ligand mimetic that activates Hh signaling to maintain E. chaffeensis infection by engaging a BCL-2 anti-apoptotic cellular program.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Bacterial Proteins/metabolism , Ehrlichia chaffeensis/genetics , Ehrlichiosis/metabolism , Hedgehog Proteins/metabolism , Host-Pathogen Interactions/genetics , Humans , Ligands , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/metabolism , Signal Transduction
7.
mBio ; 13(2): e0007622, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35357214

ABSTRACT

Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Bacterial Proteins/metabolism , Ehrlichia chaffeensis/genetics , Host-Pathogen Interactions , Humans , Ligands , Monocytes/metabolism , Receptors, Notch/metabolism , Signal Transduction
8.
Pathog Dis ; 79(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-33974702

ABSTRACT

Intracellular bacteria have evolved various strategies to evade host defense mechanisms. Remarkably, the obligately intracellular bacterium, Ehrlichia chaffeensis, hijacks host cell processes of the mononuclear phagocyte to evade host defenses through mechanisms executed in part by tandem repeat protein (TRP) effectors secreted by the type 1 secretion system. In the past decade, TRP120 has emerged as a model moonlighting effector, acting as a ligand mimetic, nucleomodulin and ubiquitin ligase. These defined functions illuminate the diverse roles TRP120 plays in exploiting and manipulating host cell processes, including cytoskeletal organization, vesicle trafficking, cell signaling, transcriptional regulation, post-translational modifications, autophagy and apoptosis. This review will focus on TRP effectors and their expanding roles in infection and provide perspective on Ehrlichia chaffeensis as an invaluable model organism for understanding infection strategies of obligately intracellular bacteria.


Subject(s)
Bacterial Proteins , Ehrlichia chaffeensis , Host-Pathogen Interactions , Tandem Repeat Sequences/genetics , Apoptosis , Ehrlichia chaffeensis/genetics , Ehrlichia chaffeensis/pathogenicity , Ehrlichiosis , Humans , Intracellular Space/microbiology , Protein Processing, Post-Translational , Signal Transduction , Type I Secretion Systems
9.
Front Immunol ; 12: 642771, 2021.
Article in English | MEDLINE | ID: mdl-33912170

ABSTRACT

Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.


Subject(s)
Anaplasmataceae/physiology , Autophagy/physiology , Host Microbial Interactions/physiology , Anaplasmataceae Infections/immunology , Animals , Humans , Immunity, Innate , Lysosomes/physiology , Signal Transduction/physiology , Wnt Signaling Pathway/physiology
10.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: mdl-33883266

ABSTRACT

Ehrlichia chaffeensis expresses the TRP120 multifunctional effector, which is known to play a role in phagocytic entry, on the surface of infectious dense-cored ehrlichiae, but a cognate host receptor has not been identified. We recently reported that E. chaffeensis activates canonical Wnt signaling in monocytes to promote bacterial uptake and intracellular survival and that TRP120 was involved in this activation event. To identify the specific mechanism of pathway activation, we hypothesized that TRP120 is a Wnt signaling ligand mimetic that initiates Wnt pathway activity through direct interaction with the Wnt pathway Frizzled family of receptors. In this study, we used confocal immunofluorescence microscopy to demonstrate very strong colocalization between E. chaffeensis and Fzd2, 4, 5, 7, and 9 as well as coreceptor LRP5 at 1 to 3 h postinfection. Direct binding between TRP120 and multiple Fzd receptors was further confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). Interfering RNA knockdown of Wnt receptors, coreceptors, and signaling pathway components significantly reduced E. chaffeensis infection, demonstrating that complex and redundant interactions are involved in Wnt pathway exploitation. We utilized in silico approaches to identify a repetitive short linear motif (SLiM) in TRP120 that is homologous to Wnt ligands and used mutant SLiM peptides and an α-TRP120-Wnt-SLiM antibody to demonstrate that the TRP120 Wnt SLiM activates the canonical Wnt pathway and promotes E. chaffeensis infection. This study reports the first example of bacterial mimicry of Wnt pathway ligands and highlights a pathogenic mechanism with potential for targeting by antimicrobial therapeutics.IMPORTANCE Upon infecting mammalian hosts, Ehrlichia chaffeensis establishes a replicative niche in microbe-eating immune system cells where it expertly orchestrates infection and spread. One of the ways Ehrlichia survives within these phagocytes is by activating evolutionarily conserved signaling pathways including the Wnt pathway; however, the molecular details of pathway hijacking have not been defined. This study is significant because it identifies an ehrlichial protein that directly interacts with components of the Wnt receptor complex, influencing pathway activity and promoting infection. Consequentially, Ehrlichia serves as a unique tool to investigate the intricacies of how pathogens repurpose human immune cell signaling and provides an opportunity to better understand many cellular processes in health and disease. Furthermore, understanding how this bacterium utilizes its small genome to survive within cells that evolved to destroy pathogens will facilitate the development of antibacterial therapeutics that could target Ehrlichia as well as other intracellular agents of human disease.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ehrlichia chaffeensis/genetics , Ehrlichia chaffeensis/metabolism , Host-Pathogen Interactions/genetics , Receptors, Wnt/metabolism , Wnt Signaling Pathway/physiology , Host-Pathogen Interactions/physiology , Humans , Ligands , Monocytes/microbiology , Receptors, Wnt/genetics , THP-1 Cells , Wnt Signaling Pathway/genetics
11.
Tuberculosis (Edinb) ; 116S: S118-S122, 2019 05.
Article in English | MEDLINE | ID: mdl-31072690

ABSTRACT

Mycobacterium tuberculosis (MTB) is a pathogen that infects and kills millions yearly. The mycobacterium's cell wall glycolipid trehalose 6,6'-dimycolate (TDM) has been used historically to model MTB induced inflammation and granuloma formation. Alterations to the model can significantly influence the induced pathology. One such method incorporates intraperitoneal pre-exposure, after which the intravenous injection of TDM generates pathological damage effectively mimicking the hypercoagulation, thrombus formation, and tissue remodeling apparent in lungs of infected individuals. The purpose of these experiments is to examine the histological inflammation involved in the TDM mouse model that induces development of the hemorrhagic response. TDM induced lungs of C57BL/6 mice to undergo granulomatous inflammation. Further histological examination of the peak response demonstrated tissue remodeling consistent with hypercoagulation. The observed vascular occlusion indicates that obstruction likely occurs due to subendothelial localized activity leading to restriction of blood vessel lumens. Trichrome staining revealed that associated damage in the hypercoagulation model is consistent with intra endothelial cell accumulation of innate cells, bordered by collagen deposition in the underlying parenchyma. Overall, the hypercoagulation model represents a comparative pathological instrument for understanding mechanisms underlying development of hemorrhage and vascular occlusion seen during MTB infection.


Subject(s)
Cord Factors/metabolism , Endothelium, Vascular/pathology , Granuloma, Respiratory Tract/pathology , Lung/blood supply , Mycobacterium tuberculosis/metabolism , Pneumonia/pathology , Tuberculosis, Pulmonary/pathology , Animals , Blood Coagulation , Disease Models, Animal , Endothelium, Vascular/microbiology , Female , Granuloma, Respiratory Tract/blood , Granuloma, Respiratory Tract/chemically induced , Granuloma, Respiratory Tract/microbiology , Lung/microbiology , Mice, Inbred C57BL , Pneumonia/blood , Pneumonia/chemically induced , Pneumonia/microbiology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/chemically induced , Tuberculosis, Pulmonary/microbiology , Vascular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...