Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 32(18): 6209-19, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22553027

ABSTRACT

Maturation of the peripheral nervous system requires specification of axonal diameter, which, in turn, has a significant influence on nerve conduction velocity. Radial axonal growth initiates with myelination, and is dependent upon the C terminus of neurofilament medium (NF-M). Molecular phylogenetic analysis in mammals suggested that expanded NF-M C termini correlated with larger-diameter axons. We used gene targeting and computational modeling to test this new hypothesis. Increasing the length of NF-M C terminus in mice increased diameter of motor axons without altering neurofilament subunit stoichiometry. Computational modeling predicted that an expanded NF-M C terminus extended farther from the neurofilament core independent of lysine-serine-proline (KSP) phosphorylation. However, expansion of NF-M C terminus did not affect the distance between adjacent neurofilaments. Increased axonal diameter did not increase conduction velocity, possibly due to a failure to increase myelin thickness by the same proportion. Failure of myelin to compensate for larger axonal diameters suggested a lack of plasticity during the processes of myelination and radial axonal growth.


Subject(s)
Axons/physiology , Axons/ultrastructure , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Neural Conduction/physiology , Neurofilament Proteins/metabolism , Neurofilament Proteins/ultrastructure , Animals , Cells, Cultured , Mice , Mice, Transgenic , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...