Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(12): 3744-3749, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483127

ABSTRACT

Ultrafast nonlinearity, which results in modulation of the linear optical response, is a basis for the development of time-varying media, in particular those operating in the epsilon-near-zero (ENZ) regime. Here, we demonstrate that the intraband excitation of hot electrons in the ENZ film results in a second-harmonic resonance shift of ∼10 THz (40 nm) and second-harmonic generation (SHG) intensity changes of >100% with only minor (<1%) changes in linear transmission. The modulation is 10-fold enhanced by a plasmonic metasurface coupled to a film, allowing for ultrafast modulation of circularly polarized SHG. The effect is described by the plasma frequency renormalization in the ENZ material and the modification of the electron damping, with a possible influence of the hot-electron dynamics on the quadratic susceptibility. The results elucidate the nature of the second-order nonlinearity in ENZ materials and pave the way to the rational engineering of active nonlinear metamaterials and metasurfaces for time-varying applications.

2.
Nat Commun ; 15(1): 703, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267406

ABSTRACT

Applications in photodetection, photochemistry, and active metamaterials and metasurfaces require fundamental understanding of ultrafast nonthermal and thermal electron processes in metallic nanosystems. Significant progress has been recently achieved in synthesis and investigation of low-loss monocrystalline gold, opening up opportunities for its use in ultrathin nanophotonic architectures. Here, we reveal fundamental differences in hot-electron thermalisation dynamics between monocrystalline and polycrystalline ultrathin (down to 10 nm thickness) gold films. Comparison of weak and strong excitation regimes showcases a counterintuitive unique interplay between thermalised and non-thermalised electron dynamics in mesoscopic gold with the important influence of the X-point interband transitions on the intraband electron relaxation. We also experimentally demonstrate the effect of hot-electron transfer into a substrate and the substrate thermal properties on electron-electron and electron-phonon scattering in ultrathin films. The hot-electron injection efficiency from monocrystalline gold into TiO2, approaching 9% is measured, close to the theoretical limit. These experimental and modelling results reveal the important role of crystallinity and interfaces on the microscopic electronic processes important in numerous applications.

3.
Nano Lett ; 23(7): 2786-2791, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36926927

ABSTRACT

The optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength. These observations not only expand the knowledge about the internal structure of composite plasmonic nanoparticles but also allow for an additional degree of freedom for controlling their nonlinear optical and mechanical properties.

4.
Laser Photon Rev ; 15(3): 2000346, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34484456

ABSTRACT

Excited carrier dynamics in plasmonic nanostructures determines many important optical properties such as nonlinear optical response and photocatalytic activity. Here it is shown that mesoscopic plasmonic covellite nanocrystals with low free-carrier concentration exhibit a much faster carrier relaxation than in traditional plasmonic materials. A nonequilibrium hot-carrier population thermalizes within first 20 fs after photoexcitation. A decreased thermalization time in nanocrystals compared to a bulk covellite is consistent with the reduced Coulomb screening in ultrathin films. The subsequent relaxation of thermalized, equilibrium electron gas is faster than in traditional plasmonic metals due to the lower carrier concentration and agrees well with that in a bulk covellite showing no evidence of quantum confinement or hot-hole trapping at the surface states. The excitation of coherent optical phonon modes in a covellite is also demonstrated, revealing coherent lattice dynamics in plasmonic materials, which until now was mainly limited to dielectrics, semiconductors, and semimetals. These findings show advantages of this new mesoscopic plasmonic material for active control of optical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...