Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(17): 170601, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29756824

ABSTRACT

Quantization of energy is a quintessential characteristic of quantum systems. Here we analyze its effects on the operation of Otto cycle heat machines and show that energy quantization alone may alter and increase machine performance in terms of output work, efficiency, and even operation mode. We show that this difference in performance occurs in machines with inhomogeneous energy level scaling, while quantum machines with homogeneous level scaling behave like classical machines. Our results demonstrate that quantum thermodynamics enables the realization of classically inconceivable Otto machines, such as those with an incompressible working substance. We propose to measure these effects experimentally using a laser-cooled trapped ion as a microscopic heat machine.

2.
Phys Rev Lett ; 119(4): 043601, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-29341728

ABSTRACT

A trapped ion transported along a periodic potential is studied as a paradigmatic nanocontact frictional interface. The combination of the periodic corrugation potential and a harmonic trapping potential creates a one-dimensional energy landscape with multiple local minima, corresponding to multistable stick-slip friction. We measure the probabilities of slipping to the various minima for various corrugations and transport velocities. The observed probabilities show that the multislip regime can be reached dynamically at smaller corrugations than would be possible statically, and can be described by an equilibrium Boltzmann model. While a clear microscopic signature of multislip behavior is observed for the ion motion, the frictional force and dissipation are only weakly affected by the transition to multistable potentials.

3.
Nat Mater ; 15(7): 717-21, 2016 07.
Article in English | MEDLINE | ID: mdl-26998915

ABSTRACT

The highly nonlinear many-body physics of a chain of mutually interacting atoms in contact with a periodic substrate gives rise to complex static and dynamical phenomena, such as structural phase transitions and friction. In the limit of an infinite chain incommensurate with the substrate, Aubry predicted a transition with increasing substrate potential, from the chain's intrinsic arrangement free to slide on the substrate, to a pinned arrangement favouring the substrate pattern. So far, the Aubry transition has not been observed. Here, using spatially resolved position and friction measurements of cold trapped ions in an optical lattice, we observed a finite version of the Aubry transition and the onset of its hallmark fractal atomic arrangement. Notably, the observed critical lattice depth for few-ion chains agrees well with the infinite-chain prediction. Our results elucidate the connection between competing ordering patterns and superlubricity in nanocontacts-the elementary building blocks of friction.

4.
Opt Express ; 23(14): 18014-28, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191861

ABSTRACT

High-finesse optical cavities placed under vacuum are foundational platforms in quantum information science with photons and atoms. We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO2-Ta2O5 dielectric stacks, and present methods to protect these coatings and to recover their initial low loss levels. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta2O5, while it does not occur if it is made of SiO2. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO2 passivating the Ta2O5 surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.

5.
Science ; 348(6239): 1115-8, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26045432

ABSTRACT

Friction between ordered, atomically smooth surfaces at the nanoscale (nanofriction) is often governed by stick-slip processes. To test long-standing atomistic models of such processes, we implemented a synthetic nanofriction interface between a laser-cooled Coulomb crystal of individually addressable ions as the moving object and a periodic light-field potential as the substrate. We show that stick-slip friction can be tuned from maximal to nearly frictionless via arrangement of the ions relative to the substrate. By varying the ion number, we also show that this strong dependence of friction on the structural mismatch, as predicted by many-particle models, already emerges at the level of two or three atoms. This model system enables a microscopic and systematic investigation of friction, potentially even into the quantum many-body regime.

6.
Opt Express ; 22(10): 11592-9, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921280

ABSTRACT

We present a simple method for narrowing the intrinsic Lorentzian linewidth of a commercial ultraviolet grating extended-cavity diode laser (TOPTICA DL Pro) using weak optical feedback from a long external cavity. We achieve a suppression in frequency noise spectral density of 20 dB measured at frequencies around 1 MHz, corresponding to the narrowing of the intrinsic Lorentzian linewidth from 200 kHz to 2 kHz. Provided additional active low-frequency noise suppression and long-term drift compensation, the system is suitable for experiments requiring a tunable ultraviolet laser with narrow linewidth and low high-frequency noise, such as precision spectroscopy, optical clocks, and quantum information science experiments.

7.
Phys Rev Lett ; 111(16): 163002, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24182262

ABSTRACT

We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number =(0.1±0.1) along the optical lattice. We measure the average position of a periodically driven ion with a resolution down to λ/40, and demonstrate localization to a single lattice site for up to 10 ms. This opens new possibilities for studying many-body systems with long-range interactions in periodic potentials, as well as fundamental models of friction.

SELECTION OF CITATIONS
SEARCH DETAIL
...