Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbon Balance Manag ; 9(1): 1, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24495313

ABSTRACT

BACKGROUND: Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios. RESULTS: Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis. CONCLUSIONS: Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.

2.
Science ; 323(5913): 521-4, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19164752

ABSTRACT

Persistent changes in tree mortality rates can alter forest structure, composition, and ecosystem services such as carbon sequestration. Our analyses of longitudinal data from unmanaged old forests in the western United States showed that background (noncatastrophic) mortality rates have increased rapidly in recent decades, with doubling periods ranging from 17 to 29 years among regions. Increases were also pervasive across elevations, tree sizes, dominant genera, and past fire histories. Forest density and basal area declined slightly, which suggests that increasing mortality was not caused by endogenous increases in competition. Because mortality increased in small trees, the overall increase in mortality rates cannot be attributed solely to aging of large trees. Regional warming and consequent increases in water deficits are likely contributors to the increases in tree mortality rates.


Subject(s)
Climate , Ecosystem , Tracheophyta , Trees , Abies/anatomy & histology , Abies/growth & development , Fires , Models, Statistical , Nonlinear Dynamics , Northwestern United States , Pinus/anatomy & histology , Pinus/growth & development , Temperature , Tracheophyta/anatomy & histology , Tracheophyta/growth & development , Trees/growth & development , Tsuga/anatomy & histology , Tsuga/growth & development , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...