Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 33(2): 108263, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053338

ABSTRACT

The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.


Subject(s)
Dopaminergic Neurons/pathology , Models, Biological , Parkinson Disease/genetics , Parkinson Disease/pathology , Single-Cell Analysis , Stress, Physiological , Transcriptome/genetics , Cell Differentiation/genetics , Cell Respiration , Cholesterol/metabolism , Chromatin Assembly and Disassembly , Dopaminergic Neurons/metabolism , Down-Regulation/genetics , Endoplasmic Reticulum Stress/genetics , Gene Expression Profiling , Genome-Wide Association Study , Glycolysis/genetics , Humans , Induced Pluripotent Stem Cells/pathology , Oxidative Phosphorylation , Oxidative Stress/genetics , Proteasome Endopeptidase Complex/metabolism , Regression Analysis , Signal Transduction , Stress, Physiological/genetics , Synapses/metabolism , Ubiquitin/metabolism , Up-Regulation/genetics
2.
Methods Mol Biol ; 1961: 153-183, 2019.
Article in English | MEDLINE | ID: mdl-30912046

ABSTRACT

Genome editing using the CRISPR/Cas9 system has rapidly established itself as an essential tool in the genetic manipulation of many organisms, including human cell lines. Its application to human induced pluripotent stem cells (hiPSCs) allows for the generation of isogenic cell pairs that differ in a single genetic lesion, and therefore the identification and characterization of causal genetic variants. We describe a simple, effective approach to perform delicate manipulations of the genome of hiPSCs through delivery of Cas9 RNPs along with ssDNA oligonucleotide repair templates that can generate mutations in up to 98% of single cell clones and introduce single nucleotide changes at an efficiency of up to 40%. We describe our use of a T7 endonuclease assay to identify active guide RNAs, and a high-throughput sequencing genotyping strategy that allows the identification of correctly edited clones. We also present our experiences of generating single nucleotide changes at 15 sites, which show considerable variability between both guides and target sites in the efficiency at which such changes can be introduced.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Genome, Human/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism
3.
Stem Cell Res ; 11(3): 1206-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013066

ABSTRACT

Basal forebrain cholinergic neurons (bfCNs) which provide innervation to the hippocampus and cortex, are required for memory and learning, and are primarily affected in Alzheimer's Disease (AD), resulting in related cognitive decline. Therefore generation of a source of bfCNs from human pluripotent stem cells (hPSCs) is crucial for in vitro disease modeling and development of novel AD therapies. In addition, for the advancement of regenerative approaches there is a requirement for an accurate developmental model to study the neurogenesis and survival of this population. Here we demonstrate the efficient production of bfCNs, using a novel embryoid body (EB) based non-adherent differentiation (NAdD) protocol. We establish a specific basal forebrain neural stem cell (NSC) phenotype via expression of the basal forebrain transcription factors NKX2.1 and LHX8, as well as the general forebrain marker FOXG1. We present evidence that this lineage is achieved via recapitulation of embryonic events, with induction of intrinsic hedgehog signaling, through the use of a 3D non-adherent differentiation system. This is the first example of hPSC-derived basal forebrain-like NSCs, which are scalable via self-renewal in prolonged culture. Furthermore upon terminal differentiation these basal forebrain-like NSCs generate high numbers of cholinergic neurons expressing the specific markers ChAT, VACht and ISL1. These hPSC-derived bfCNs possess characteristics that are crucial in a model to study AD related cholinergic neuronal loss in the basal forebrain. Examples are expression of the therapeutic target p75(NTR), the release of acetylcholine, and demonstration of a mature, and functional electrophysiological profile. In conclusion, this work provides a renewable source of human functional bfCNs applicable for studying AD specifically in the cholinergic system, and also provides a model of the key embryonic events in human bfCN development.


Subject(s)
Cell Differentiation , Cholinergic Neurons/cytology , Hedgehog Proteins/metabolism , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Signal Transduction , Acetylcholinesterase/metabolism , Animals , Brain/metabolism , Brain/pathology , Calcium/metabolism , Cell Line , Cell Lineage , Cholinergic Neurons/metabolism , Cholinergic Neurons/transplantation , Female , Humans , Pluripotent Stem Cells/metabolism , Rats , Rats, Inbred Lew , Transplantation, Heterologous
4.
Regen Med ; 7(5): 675-83, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22954438

ABSTRACT

AIM: Hypoxia is used within in vitro stem cell culture to recreate conditions similar to the in vivo environment surrounding the early blastocyst, from which embryonic stem cells can be isolated. Traditionally, basic research has used a coculture feeder system to culture pluripotent stem cells; however, it is possible that lowered oxygen may restrict cellular metabolic activity of the inactivated mouse embryonic fibroblasts (iMEFs) by disrupting oxygen-dependent pathways, such as ATP production through aerobic respiration. In this work, we examined the potential to continue using routine culture methods, such as iMEFs, to support human pluripotent cell expansion under hypoxia instead of feeder-free methods that can cause cell instability and offer a poor cell attachment rate. MATERIALS & METHODS: Metabolic activity and viability studies were carried out in normoxic and hypoxic conditions. Pluripotent stem cells were introduced into hypoxia on iMEFs and the rate of colony expansion was compared with normoxic conditions. In addition, pluripotent stem cells were grown in hypoxia for over 6 months to demonstrate maintenance of pluripotency. Immunocytochemistry and western blotting evaluated the activity of the hypoxic transcription factor, HIF1A. RESULTS: Hypoxia does not significantly affect viability or metabolic activity of feeder cells, and there is no detrimental effect on the rate of pluripotent stem cell colony expansion when cells are cultured in hypoxia. In addition, hypoxic pluripotent stem cells maintain their pluripotent nature and ability to differentiate into the three germ layers. CONCLUSION: The traditional iMEF coculture method is suitable for use in hypoxia and does not need to be replaced with feeder-free systems for hypoxic culture of human pluripotent stem cell lines in basic research.


Subject(s)
Cell Culture Techniques/methods , Embryo, Mammalian/cytology , Fibroblasts/cytology , Pluripotent Stem Cells/cytology , Animals , Biomarkers/metabolism , Cell Extracts , Cell Hypoxia , Cell Line , Cell Proliferation , Cell Survival , Fibroblasts/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Pluripotent Stem Cells/metabolism , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...