Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Aerosol Med Pulm Drug Deliv ; 31(6): 358-371, 2018 12.
Article in English | MEDLINE | ID: mdl-29878859

ABSTRACT

Background:In vitro-in vivo correlations (IVIVC) for lung deposition may be established by testing inhalers in vitro with realistic mouth-throat (MT) models and inhalation profiles (IP). This study was designed to compare the currently available MT models and their ability to predict in vivo lung deposition. Methods: Budelin® Novolizer®, Ventolin® Evohaler®, and Respimat® fenoterol were chosen to represent a dry powder inhaler (DPI), metered dose inhaler (MDI), and soft mist inhaler (SMI) in tests using eight MT models: small, medium, and large Virginia Commonwealth University (VCU) models; small, medium, and large oropharyngeal consortium (OPC) models, the medium adult Alberta Idealized Throat (AIT), and the United States Pharmacopeia (USP) Induction Port, with IPs that simulated those used by volunteers in lung scintigraphy studies. Drug deposition in MT was compared across the models, and IVIVCs evaluated by comparing values for total lung dose in vitro (TLDin vitro) to those reported in the clinic. Results: MT deposition was dependent on both the flow condition and MT geometry for all the inhalers, while the deposition rank order was independent of both factors. The overall ranking was USP

Subject(s)
Aerosols/administration & dosage , Lung/metabolism , Models, Anatomic , Nebulizers and Vaporizers , Administration, Inhalation , Adult , Dry Powder Inhalers , Equipment Design , Female , Humans , Male , Metered Dose Inhalers , Mouth/anatomy & histology , Pharynx/anatomy & histology , Tissue Distribution
2.
J Aerosol Med Pulm Drug Deliv ; 30(5): 339-348, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28332899

ABSTRACT

BACKGROUND: The dose and aerodynamic particle size distribution (APSD) of drug aerosols' exiting models of the mouth and throat (MT) during a realistic inhalation profile (IP) may be estimated in vitro and designated Total Lung Dose, TLDin vitro, and APSDTLDin vitro, respectively. These aerosol characteristics likely define the drug's regional distribution in the lung. METHODS: A general method was evaluated to enable the simultaneous determination of TLDin vitro and APSDTLDin vitro for budesonide aerosols' exiting small, medium and large VCU-MT models. Following calibration of the modified next generation pharmaceutical impactor (NGI) at 140 L/min, variations in aerosol dose and size exiting MT were determined from Budelin® Novolizer® across the IPs reported by Newman et al., who assessed drug deposition from this inhaler by scintigraphy. RESULTS: Values for TLDin vitro from the test inhaler determined by the general method were found to be statistically comparable to those using a filter capture method. Using new stage cutoffs determined by calibration of the modified NGI at 140 L/min, APSDTLDin vitro profiles and mass median aerodynamic diameters at the MT exit (MMADTLDin vitro) were determined as functions of MT geometric size across Newman's IPs. The range of mean values (n ≥ 5) for TLDin vitro and MMADTLDin vitro for this inhaler extended from 6.2 to 103.0 µg (3.1%-51.5% of label claim) and from 1.7 to 3.6 µm, respectively. CONCLUSIONS: The method enables reliable determination of TLDin vitro and APSDTLDin vitro for aerosols likely to enter the trachea of test subjects in the clinic. By simulating realistic IPs and testing in different MT models, the effects of major variables on TLDin vitro and APSDTLDin vitro may be studied using the general method described in this study.


Subject(s)
Bronchodilator Agents/administration & dosage , Budesonide/administration & dosage , Models, Anatomic , Trachea/metabolism , Administration, Inhalation , Aerosols , Bronchodilator Agents/pharmacokinetics , Budesonide/pharmacokinetics , Humans , In Vitro Techniques , Lung/metabolism , Nebulizers and Vaporizers , Particle Size , Reproducibility of Results , Tissue Distribution
3.
J Aerosol Med Pulm Drug Deliv ; 29(2): 196-206, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26447531

ABSTRACT

BACKGROUND: The amount of drug aerosol from an inhaler that can pass through an in vitro model of the mouth and throat (MT) during a realistic breath or inhalation flow rate vs. time profile (IP) is designated the total lung dose in vitro, or TLDin vitro. This article describes a clinical study that enabled us to recommend a general method of selecting IPs for use with powder inhalers of known airflow resistance (R) provided subjects followed written instructions either alone or in combination with formal training. METHODS: In a drug-free clinical trial, inhaler-naïve, nonsmoking healthy adult human volunteers were screened for normal pulmonary function. IPs were collected from each volunteer inhaling through different air flow resistances after different levels of training. IPs were analyzed to determine the distribution of inhalation variables across the population and their dependence on training and airflow resistance. RESULTS: Equations for IP simulation are presented that describe the data including confidence limits at each resistance and training condition. Realistic IPs at upper (90%), median (50%), and lower (10%) confidence limits were functions of R and training. Peak inspiratory flow rates (PIFR) were inversely proportional to R so that if R was assigned, values for PIFR could be calculated. The time of PIFR, TPIFR, and the total inhaled volume (V) were unrelated to R, but dependent on training. Once R was assigned for a powder inhaler to be tested, a range of simulated IPs could be generated for the different training scenarios. Values for flow rate acceleration and depth of inspiration could also be varied within the population limits of TPIFR and V. CONCLUSIONS: The use of simulated IPs, in concert with realistic in vitro testing, should improve the DPI design process and the confidence with which clinical testing may be initiated for a chosen device.


Subject(s)
Computer Simulation , Dry Powder Inhalers , Lung/physiology , Models, Biological , Pharmaceutical Preparations/administration & dosage , Respiration , Administration, Inhalation , Adult , Aerosols , Airway Resistance , Algorithms , Equipment Design , Female , Healthy Volunteers , Humans , Male , Pamphlets , Patient Education as Topic/methods , Powders , Time Factors , Young Adult
4.
Eur Respir J ; 45(2): 449-62, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25261325

ABSTRACT

Prostacyclin and its analogues improve cardiac output and functional capacity in patients with pulmonary arterial hypertension (PAH); however, the underlying mechanism is not fully understood. We hypothesised that prostanoids have load-independent beneficial effects on the right ventricle (RV). Angio-obliterative PAH and RV failure were induced in rats with a single injection of SU5416 followed by 4 weeks of exposure to hypoxia. Upon confirmation of RV dysfunction and PAH, rats were randomised to 0.1 µg·kg(-1) nebulised iloprost or drug-free vehicle, three times daily for 2 weeks. RV function and treadmill running time were evaluated pre- and post-iloprost/vehicle treatment. Pulmonary artery banded rats were treated 8 weeks after surgery to allow for significant RV hypertrophy. Inhaled iloprost significantly improved tricuspid annulus plane systolic excursion and increased exercise capacity, while mean pulmonary artery pressure and the percentage of occluded pulmonary vessels remained unchanged. Rats treated with iloprost had a striking reduction in RV collagen deposition, procollagen mRNA levels and connective tissue growth factor expression in both SU5416/hypoxia and pulmonary artery banded rats. In vitro, cardiac fibroblasts treated with iloprost showed a reduction in transforming growth factor (TGF)-ß1-induced connective tissue growth factor expression, in a protein kinase A-dependent manner. Iloprost decreased TGF-ß1-induced procollagen mRNA expression as well as cardiac fibroblast activation and migration. Iloprost significantly induced metalloproteinase-9 gene expression and activity and increased the expression of autophagy genes associated with collagen degradation. Inhaled iloprost improves RV function and reverses established RV fibrosis partially by preventing collagen synthesis and by increasing collagen turnover.


Subject(s)
Hypertrophy, Right Ventricular/drug therapy , Iloprost/therapeutic use , Animals , Collagen/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Echocardiography , Fibroblasts/cytology , Fibrosis , Heart Ventricles/drug effects , Heart Ventricles/pathology , Hemodynamics , Hypertension, Pulmonary/chemically induced , Hypoxia/physiopathology , Indoles , Male , Matrix Metalloproteinase 9/metabolism , Microscopy, Phase-Contrast , Physical Conditioning, Animal , Procollagen/metabolism , Pyrroles , RNA, Messenger/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Vasodilator Agents/therapeutic use , Ventricular Function, Right
5.
J Pharmacol Exp Ther ; 347(2): 318-24, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24008335

ABSTRACT

A realistic ex vivo model, the isolated perfused rat lung (IPRL), was used to investigate tobramycin's pulmonary disposition at typical therapeutic concentrations. Different nominal doses were administered in aqueous solution to the airways alongside nonbinding absorption markers, fluorescein and mannitol. The mean fraction of each administered dose reaching the perfusate (Fp) was determined as a function of time following administration. Dynamic dialysis was also used to quantify the kinetics of tobramycin binding and/or tissue retention in the IPRL immediately after drug administration. Whereas the absorption markers fluorescein and mannitol both showed monoexponential dose-independent increases in Fp with time, tobramycin's pulmonary absorption into the perfusate was biexponential and dose-dependent due to tissue binding or retention. Best estimates for the first-order rate constants of tobramycin absorption appeared dose-independent (0.065-0.070 min(-1)), with values close to the mean for fluorescein (0.076 min(-1)). The rate constant for dissociation from IPRL tissue was also relatively constant (0.018-0.022 min(-1)), whereas that for association decreased from 0.16 to 0.07 min(-1) with increasing airway dose from 0.002 to 2 mg. Dynamic dialysis data from sliced IPRL tissue following identical airway administration were consistent with those from the intact IPRL, confirming tobramycin's "slow on, slow off" binding and sequestration by the rat lung. Overall, tobramycin absorption was fast following airway administration. However, dose- and concentration-dependent slow-onset tissue binding extended the duration of tobramycin's presence in the rat lung. These findings may explain, in part, the apparent success of inhaled tobramycin therapy when treating pulmonary infections.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Lung/metabolism , Models, Biological , Tobramycin/pharmacokinetics , Absorption , Administration, Inhalation , Animals , Anti-Bacterial Agents/administration & dosage , Dose-Response Relationship, Drug , Equipment Design , In Vitro Techniques , Male , Perfusion , Rats , Rats, Sprague-Dawley , Tissue Distribution , Tobramycin/administration & dosage
6.
J Aerosol Med Pulm Drug Deliv ; 26(3): 138-44, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22947131

ABSTRACT

BACKGROUND: A new in vitro test method for dry powder inhalers (DPIs) was recently found to be predictive of the published in vivo results for Budelin Novolizer. The present study was intended to assess the method's robustness by evaluating correlations between average drug deposition in vitro and in vivo from five different DPIs. METHODS: In vitro drug deposition from five marketed DPIs was assessed in a realistic physical airway model of a "medium" sized adult in an experimental setup that allowed deposition to be characterized regionally for carefully selected simulated air flow rate versus time profiles. The DPIs studied were Spiriva(®) HandiHaler(®), Relenza(®) Diskhaler(®), Salbutamol Easyhaler(®), Pulmicort(®) Turbuhaler(®), and Foradil(®) Aerolizer(®). In vitro regional deposition results were compared with those reported in the literature in order to create in vitro-in vivo correlations (IVIVCs) for each inhaler. RESULTS: Mean percent total lung deposition (TLD ± SD) in vitro for Spiriva HandiHaler, Relenza Diskhaler, Salbutamol Easyhaler, Pulmicort Turbuhaler, and Foradil Aerolizer were 17.3 ± 1.2, 22.6 ± 1.1, 29.0 ± 1.1, 28.0 ± 3.0, and 21.7 ± 1.2, respectively. These results showed excellent agreement with reported in vivo values, with absolute prediction errors in TLD of ≤ 2% for all DPIs except Relenza Diskhaler. Similarly, in vitro mouth-throat and device deposition results were stoichiometrically comparable to those reported in vivo for all DPIs except Relenza Diskhaler and Turbuhaler. Inspection of the scintigraphy studies for Relenza Diskhaler and Turbohaler revealed possible problems with powder labeling and result interpretation in their in vivo clinical assessments. CONCLUSIONS: A characteristic physical airway model representing a medium-sized adult, when coupled to carefully chosen characteristic inhalation maneuvers used in the clinic, produced results that correlated with regional drug deposition estimates from scintigraphy across a group of different DPIs.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Lung/metabolism , Pharmaceutical Preparations/administration & dosage , Adult , Animals , Humans , Lung/diagnostic imaging , Models, Anatomic , Radionuclide Imaging , Tissue Distribution
7.
J Aerosol Med Pulm Drug Deliv ; 26(3): 145-56, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23025452

ABSTRACT

BACKGROUND: Inhaler orientation with respect to a patient's mouth may be an important variable determining the efficiency of aerosol lung delivery. The effect of insertion angle on regional deposition was evaluated for a series of inhalers using concurrent in vitro and computational fluid dynamics (CFD) analysis. METHODS: Geometrically realistic physical mouth-throat (MT) and upper tracheobronchial (TB) models were constructed to connect different inhalers at a series of insertion angles relative to the horizontal plane of the model. These models were used to assess albuterol sulfate deposition from the Novolizer(®) dry powder inhaler (DPI), Proventil(®) HFA pressurized metered dose inhaler (MDI), and Respimat(®) Soft Mist™ Inhaler (SMI) following the actuation of a single dose. Drug deposition from Novolizer DPI was studied for Salbulin(®) and an experimental "drug only" formulation. Albuterol sulfate was recovered and quantified from the device and the MT and TB regions. RESULTS: Significant differences in MT and total lung dose (TLD) of albuterol sulfate deposition were not observed for Salbulin Novolizer DPI and Respimat SMI inserted at different angles. In contrast, drug-only Novolizer DPI and Proventil HFA MDI showed a significant difference in MT and TLD deposition using different insertion angles. For drug-only Novolizer DPI and Proventil HFA MDI, the lowest and the highest MT depositions were observed at +10° and -20°, respectively; for Respimat SMI and Salbulin Novolizer DPI, these angles were -10° and +10°, and +20° and -20°, respectively. CFD simulations were in agreement with the experimental results and illustrated shifts in local particle deposition associated with changes in insertion angle. CONCLUSION: The effect of inhaler orientation at the inhaler-mouth interface on MT aerosol deposition appeared to be dependent on velocity, aerosol size, and formulation. These findings not only demonstrate the need for patient education on correct inhaler orientation, but provide important new methods for those designing new inhalers.


Subject(s)
Albuterol/pharmacokinetics , Drug Delivery Systems , Lung/metabolism , Nebulizers and Vaporizers , Aerosols , Albuterol/administration & dosage , Dry Powder Inhalers , Equipment Design , Humans , Hydrodynamics , Metered Dose Inhalers , Models, Anatomic , Particle Size , Tissue Distribution
8.
J Aerosol Med Pulm Drug Deliv ; 25(1): 32-40, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22070526

ABSTRACT

BACKGROUND: In vitro-in vivo correlations (IVIVCs) are needed to relate in vitro test results for deposition to mean data from clinical trials, as well as the extremes in a population. Because drug deposition variations are related to differences in airway dimensions and inhalation profiles, this article describes the development and validation of models and methods to predict in vivo results. METHODS: Three physical models of the upper airways were designed as small, medium, and large versions to represent 95% of the normal adult human population. The physical dimensions were validated by reference to anatomy literature. The models were constructed by rapid prototyping, housed in an artificial thorax, and used for in vitro testing of drug deposition from 200 µg Budelin Novolizers using a breath simulator to mimic the inhalation profiles used in the clinic. In vitro results were compared to those reported in vivo. RESULTS: The "average" model was scaled to produce "small" and "large" versions by multiplying linear dimensions by 0.748 or 1.165, respectively, based on reports of the mean and standard deviation of airway volume across a normal adult population. In vitro deposition variation under fixed test conditions was small. Testing in the model triplet however, using air flow rate versus time profiles based on the mean and the extremes reported in the clinic, produced results for total lung deposition (TLD) in vitro consistent with the complete range of drug deposition results reported in vivo. The effects of variables such as flow rate in vitro were also predictive of in vivo deposition. CONCLUSIONS: A new in vitro test method is described to predict the median and range of aerosol drug deposition seen in vivo. The method produced an IVIVC that was consistent with 1:1 predictions of total lung deposition from a marketed powder inhaler in trained normal adults.


Subject(s)
Lung/metabolism , Pharmaceutical Preparations/metabolism , Adult , Aerosols , Female , Humans , Male , Models, Biological
9.
J Aerosol Med Pulm Drug Deliv ; 23 Suppl 2: S59-69, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21133801

ABSTRACT

In order to answer the question "what research remains to be done?" we review the current state of the art in pharmaceutical aerosol deposition modeling and explore possible in vivo- in vitro correlations (IVIVC) linking drug deposition in the human lung to predictions made using in vitro physical airway models and in silico computer models. The use of physical replicas of portions of the respiratory tract is considered, alongside the advantages and disadvantages of the different imaging methods used to obtain their dimensions. The use of airway replicas to determine drug deposition in vitro is discussed and compared with the predictions from different empirical curve fits to long-standing in vivo deposition data for monodisperse aerosols. The use of improved computational models and three-dimensional computational fluid dynamics (CFD) to predict aerosol deposition within the respiratory tract is examined. CFD's ability to predict both drug deposition from pharmaceutical aerosol sprays and powder behavior in dry powder inhalers is examined; both were highlighted as important areas for future research. Although the authors note the abilities of current in vitro and in silico methods to predict in vivo data, a number of limitations remain. These include our present inability to either image or replicate all but the most proximal airways in sufficient spatial and temporal detail to allow full capture of the fluid and aerosol mechanics in these regions. In addition, the highly complex microscale behavior of aerosols within inhalers and the respiratory tract places extreme computational demands on in silico methods. When the complexity of variations in respiratory tract geometry is associated with additional factors such as breathing pattern, age, disease state, postural position, and patient-device interaction are all considered, it is clear that further research is required before the prediction of all aspects of inhaled pharmaceutical aerosol deposition is possible.


Subject(s)
Drug Delivery Systems , Models, Biological , Pharmaceutical Preparations/administration & dosage , Administration, Inhalation , Aerosols , Animals , Computer Simulation , Humans , Hydrodynamics , Nebulizers and Vaporizers , Research/trends , Respiratory System/metabolism , Tissue Distribution
10.
J Aerosol Med Pulm Drug Deliv ; 22(1): 55-65, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18954291

ABSTRACT

The modified Electrical Low Pressure Impactor (ELPI) is currently being used in several laboratories to determine inherent electrostatic charge of pharmaceutical aerosols as a function of their particle size. However, the ELPI appears to underestimate the aerodynamic particle size distributions (aPSDs) of pressurized metered dose inhalers (pMDIs), casting doubt upon the manufacturer's calibration. In the present study, four commercially available pMDIs with a range of aPSDs were used to recalibrate cutoff diameters (d50s) of the ELPI stages using a reference ACI. Particle size analyses were performed in a mensurated ACI and a calibrated modified ELPI (n = 5); stage coating was employed in both instruments. The ACI data were fitted to a lognormal cumulative distribution function by nonlinear regression analysis. Best estimates for mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) for each pMDI were obtained and used in combination with impaction results from the modified ELPI to determine new d50s for each of the ELPI stages by numerical methods. Ventolin HFA was employed to validate the new ELPI d50 values. The curve-fitting procedure produced excellent fits of the ACI data for all the calibration pMDIs, which were well modeled as mono-modal and lognormally distributed. The mean d50s obtained following recalibration of the modified ELPI were found to deviate increasingly from the manufacturer-supplied values as aerodynamic diameter decreased. Ventolin HFA's MMAD determined using the modified ELPI with the manufacturer-supplied d50s was 2.06 +/- 0.08 microm. The MMAD calculated using the recalibrated d50s was 2.63 +/- 0.09 microm, which was statistically indistinguishable (p = 0.0852) from that determined for Ventolin HFA using the ACI (2.73 +/- 0.09 microm). In the absence of a comprehensive recalibration of the ELPI using monodisperse aerosols, the mean d50s for stages 4-12 of ELPI reported offer a practical way of analyzing the aPSD of pharmaceutical aerosols based on the collection and chemical analysis of ELPI deposition data.


Subject(s)
Aerosols/chemistry , Calibration , Particle Size , Pressure , Static Electricity
11.
J Pharm Sci ; 98(3): 1028-39, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18661538

ABSTRACT

The compendial methods of particle size distribution (PSD) profile determination for dry powder inhalers (DPIs) were compared between the Next Generation Pharmaceutical Impactor (NGI) and the Andersen Cascade Impactor (ACI). Relenza Rotadisk (zanamivir) and Diskhaler was used as a model DPI and sampled into each impactor via its preseparator (PS), at 90 L/min under various protocols. In the NGI, silicone coating was shown to be indispensable to prevent or minimize particle bounce and reentrainment, and to reduce wall losses to the levels acceptable to the compendia (5%). In contrast, the ACI exceeded this 5% limit, regardless of coating, implying different wall loss mechanisms from the NGI. Particle bounce occurred in both impactors, inaccurately undersizing the PSD profiles for Relenza, unless the collection surfaces were coated or an increased number of doses were employed. Hence, the PSD profile for Relenza following single dose collection in the stage-coated NGI was the most accurate. In contrast, the use of the ACI and its PS for Relenza at 90 L/min suffered from several problems, even though the poorly designed PS still resulted in consistent impactor dose and PSD profiles, compared to those obtained from the NGI and its PS.


Subject(s)
Drug Delivery Systems/instrumentation , Metered Dose Inhalers/standards , Administration, Inhalation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Particle Size , Silicones/chemistry
12.
Pharm Res ; 24(9): 1636-44, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17476466

ABSTRACT

PURPOSE: To characterize the kinetic dependence of pulmonary absorption and metabolism of insulin and lispro on the magnitude of their hexameric association. METHODS: Hexamer content by weight percent (%Hex) in various insulin-zinc and lispro-zinc solutions were determined by quantitative centrifugal ultrafiltration and zinc titration with terpyridine (QCUF-ZTT). Each of the solutions (0.1 ml) was then administered into the airways of the IPRL of normal and experimental diabetic animals. Rate constants were determined for lung absorption (k (a)) and non-absorptive loss (k (nal); comprising mucociliary clearance and metabolism). RESULTS: %Hex in administered solutions ranged from 3.3 to 94.4%. Data analysis showed excellent correlations between the values for k (a) or k (nal) and %Hex, irrespective of insulin type, concentration, solution pH or ionic strength. The values for k (a) decreased (0.22 --> 0.05 h(-1)) with increasing %Hex, as did values for k (nal). At %Hex in administered solutions >/=50%, values for k (nal) approached estimates for the rate constant for mucociliary clearance, implying that lung metabolism occurred primarily with monomeric insulin. There were no differences in insulin disposition kinetics between lungs taken from experimental diabetic and sham-control animals. CONCLUSIONS: The kinetics of pulmonary insulin disposition depended on the magnitude of molecular self-association. Dissociated forms of insulin (dimers or monomers) in the dosing solution showed higher rates than hexamers for both lung absorption and metabolism.


Subject(s)
Insulin/pharmacokinetics , Lung/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Insulin/administration & dosage , Insulin/analogs & derivatives , Insulin/chemistry , Insulin Lispro , Male , Perfusion , Rats , Rats, Sprague-Dawley , Streptozocin
13.
Nat Rev Drug Discov ; 6(1): 67-74, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17195033

ABSTRACT

Remarkably, with the exception of anaesthetic gases, the ancient human practice of inhaling substances into the lungs for systemic effect has only just begun to be adopted by modern medicine. Treatment of asthma by inhaled drugs began in earnest in the 1950s, and now such 'topical' or targeted treatment with inhaled drugs is considered for treating many other lung diseases. More recently, major advances have led to increasing interest in systemic delivery of drugs by inhalation. Small molecules can be delivered with very rapid action, low metabolism and high bioavailability; and macromolecules can be delivered without injections, as highlighted by the recent approval of the first inhaled insulin product. Here, we review these advances, and discuss aspects of lung physiology and formulation composition that influence the systemic delivery of inhaled therapeutics.


Subject(s)
Administration, Inhalation , Lung/metabolism , Pharmaceutical Preparations/administration & dosage , Absorption , Chemistry, Pharmaceutical , Humans , Pharmacokinetics
14.
Expert Rev Respir Med ; 1(1): 39-41, 2007 Aug.
Article in English | MEDLINE | ID: mdl-20477264
15.
AAPS PharmSciTech ; 8(4): E90, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-18181550

ABSTRACT

The purpose of this article is to report final results of the evaluation of a chi-square ratio test proposed by the US Food and Drug Administration (FDA) for demonstrating equivalence of aerodynamic particle size distribution (APSD) profiles of nasal and orally inhaled drug products. A working group of the Product Quality Research Institute previously published results demonstrating some limitations of the proposed test. In an effort to overcome the test's limited discrimination, the group proposed a supplemental test, a population bioequivalence (PBE) test for impactor-sized mass (ISM). In this final report the group compares the chi-square ratio test to the ISM-PBE test and to the combination of both tests. The basis for comparison is a set of 55 realistic scenarios of cascade impactor data, which were evaluated for equivalence by the statistical tests and independently by the group members. In many instances, the combined application of these 2 tests appeared to increase the discriminating ability of the statistical procedure compared with the chi-square ratio test alone. In certain situations the chi-square ratio test alone was sufficient to determine equivalence of APSD profiles, while in other situations neither of the tests alone nor their combination was adequate. This report describes all of these scenarios and results. In the end, the group did not recommend a statistical test for APSD profile equivalence. The group did not investigate other in vitro tests, in vivo issues, or other statistical tests for APSD profile comparisons. The studied tests are not intended for routine quality control of APSD.


Subject(s)
Aerosols , Nebulizers and Vaporizers , Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/instrumentation , Academies and Institutes , Administration, Inhalation , Administration, Intranasal , Chi-Square Distribution , Data Interpretation, Statistical , Equipment Design , Guidelines as Topic , Particle Size , Pharmaceutical Preparations/administration & dosage , Quality Control , Reproducibility of Results , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Therapeutic Equivalency , United States , United States Food and Drug Administration
16.
Int J Pharm ; 303(1-2): 113-24, 2005 Oct 13.
Article in English | MEDLINE | ID: mdl-16139453

ABSTRACT

Perphenazine (a potent antiemetic) was aerosolized using capillary aerosol generator to generate respirable condensation aerosols from drug in propylene glycol (PG) solutions, by pumping the liquids through a heated capillary tube. The study characterized the stability of perphenazine during and following aerosol generation. The stability-indicating HPLC method (C-8 column with a mobile phase of 52% 0.01 M pH 3.0 acetate buffer+48% acetonitrile) also enabled the study of perphenazine stability in solution under acidic, basic, oxidizing and photolysing conditions. An LC-MS (ESI+) method was used to characterize the degradation products. Perphenazine was found to be stable in acidic and basic conditions, while perphenazine sulfoxide was the major product formed in dilute peroxide solutions. Two photo-degradation products were formed in PG that were tentatively identified by LC-MS; one of these was synthesized and confirmed to be 2-[4-(3-phenothiazin-10-yl-propyl)-piperazino]-ethanol. Both photolysis products showed that aromatic dechlorination had occurred and one appeared to also result from interaction with the solvent. Within an aerosolization energy window of 84-95 J, fine particle aerosols were generated from perphenazine PG formulations with no significant degradation. Small amounts of degradation products were produced in all samples during aerosolization at elevated (non-optimal) energies. These were largely consistent with those seen to result from oxidation and photolysis in solution, showing that oxidation and dehalogenation appeared to be the main degradation pathways followed when the CAG system was overheated.


Subject(s)
Antiemetics/chemistry , Nebulizers and Vaporizers , Perphenazine/chemistry , Aerosols , Antiemetics/analysis , Chromatography, High Pressure Liquid/methods , Drug Stability , Hot Temperature , Hydrogen Peroxide , Hydrogen-Ion Concentration , Light , Mass Spectrometry , Oxidation-Reduction , Particle Size , Perphenazine/analysis , Propylene Glycol , Reproducibility of Results , Solutions , Time Factors
17.
Eur J Pharm Sci ; 25(4-5): 369-78, 2005.
Article in English | MEDLINE | ID: mdl-15979534

ABSTRACT

The pharmacokinetics of several lung disposition pathways for pulmonary insulin were studied and modeled in the isolated perfused rat lung (IPRL). Insulin solution was administered by forced instillation into the airways of the IPRL as 0.1 or 0.02 ml doses of coarse spray, with or without bacitracin (BAC), N-ethylmaleimide (NEM) and atrial natriuretic peptide (ANP). Each insulin absorption profile was fitted to a kinetic model that incorporated the distribution fraction of the dose reaching the lobar region (DF) and the rate constants for absorption into perfusate (k(a)) and non-absorptive loss (k(nal)); k(nal) was shown to be due to the sum of mucociliary clearance and metabolism. Insulin absorption occurred largely by passive diffusion with values for k(a) = 0.39-0.50 h(-1). With DF = 0.91 following 0.1 ml doses, 11.9 +/- 3.4% of bioavailabilities were observed in 1h. In contrast, derived values for k(nal) = 2.34-3.45 h(-1) were significantly larger than the rate constant for mucociliary clearance determined previously in this IPRL (0.96-1.74 h(-1)) due to lung metabolism. Indeed, BAC, but neither NEM nor ANP, was found to decrease the value of k(nal), which suggested that BAC-inhibitable lung ectopeptidases, and not insulin degrading enzyme (IDE), were responsible for this pulmonary metabolism. Shallower lung distribution with DF = 0.73 following 0.02 ml doses resulted in reduced values for k(a) = 0.27 h(-1) and k(nal) = 2.79 h(-1), indicating that these kinetic processes may be lung-region dependent, even within this model and emphasizing the likely importance of reliable lung deposition in vivo.


Subject(s)
Insulin/pharmacokinetics , Lung/metabolism , Mucociliary Clearance , Absorption/physiology , Animals , Bacitracin/pharmacology , Biological Availability , Bronchi/chemistry , Bronchi/metabolism , Diffusion , Enzyme Inhibitors/pharmacology , Fluorescein-5-isothiocyanate , In Vitro Techniques , Instillation, Drug , Insulin/administration & dosage , Insulin/analysis , Lung/chemistry , Lung/drug effects , Male , Models, Biological , Mucociliary Clearance/physiology , Perfusion , Pulmonary Circulation , Rats , Rats, Sprague-Dawley , Trachea
18.
J Pharm Biomed Anal ; 39(1-2): 196-205, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-15925469

ABSTRACT

The LC-MS characteristics of budesonide and a series of structurally related corticosteroids were reviewed to commence the construction of a library of chromatographic and mass spectral information to aid identification of budesonide degradation products during formulation stabilization investigations. The LC-ESI(+)-MS technique employing a Hypersil C18 column with a mobile phase of ethanol-acetonitrile-formic acid (pH 3.8; 0.14 mM) (2:30:68, v/v/v) was then used to characterize 23 corticosteroids. Based on their structures, the corticosteroids were classified into three groups: (I) 4-pregnene-3-one steroids; (II) 1,4-pregnadien-3-one steroids with no fluorine substituents; and (III) 1,4-pregnadiene-3-one steroids with fluorine substituents. Chromatographic (retention time and UV absorbance) and mass spectral properties were correlated with the known chemical structures of these corticosteroids. Base peak and mass spectral fragmentation patterns were related to steroid structural characteristics.


Subject(s)
Adrenal Cortex Hormones/analysis , Anti-Inflammatory Agents/analysis , Budesonide/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Spectrophotometry, Ultraviolet/methods
19.
Clin Pharmacokinet ; 44(3): 263-77, 2005.
Article in English | MEDLINE | ID: mdl-15762769

ABSTRACT

Several particle engineering technologies have recently emerged, which have enabled inhaled microspheres to seek to manipulate pulmonary biopharmaceuticals, and to improve therapeutic efficacy for both local and systemic treatments. These microspheres may be designed to sustain drug release, to prolong lung retention, to achieve drug targeting and/or to enhance drug absorption and thereby, to seek the potentials of reducing dosing frequency and/or drug dose, while maintaining therapeutic efficacy and/or reducing adverse effects. While product development is still in process, in many cases, considerable therapeutic benefits and/or new therapeutic opportunities can be envisaged. 'Proof-of-concept' results are now available for various drug classes including beta(2)-adrenoceptor agonists, corticosteroids, antimycobacterial antibacterials, estradiol and therapeutic macromolecules such as insulin. Nevertheless, their development success must overcome several critical and unique challenges including toxicological evaluations of microsphere materials, and, clearly, successful products should meet the needs of the patient and the market place. Unfortunately, such issues have not always been addressed or examined adequately in the current studies, and thus we may anticipate paradigm shifts in the research of several groups seeking to develop products with improved therapeutic profiles. Nevertheless, it seems likely that improved inhalation products, with greater therapeutic efficacy and reduced adverse effects, will result from next-generation respirable microspheres. These may be expected to contain drugs intended for both local and systemic activity.


Subject(s)
Lung/metabolism , Microspheres , Administration, Inhalation , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/pharmacokinetics , Adrenergic beta-Agonists/therapeutic use , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/pharmacokinetics , Anti-Asthmatic Agents/therapeutic use , Antitubercular Agents/administration & dosage , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Estradiol/administration & dosage , Estradiol/pharmacokinetics , Estrogen Replacement Therapy , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Insulin/administration & dosage , Insulin/pharmacokinetics , Insulin/therapeutic use , Lung Diseases/drug therapy , Lung Diseases/metabolism , Tissue Distribution
20.
J Pharm Sci ; 93(7): 1828-37, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15176070

ABSTRACT

The particle sizing performance of a Next Generation Pharmaceutical Impactor (NGI) was compared to that of an Andersen cascade impactor (ACI). A single lot of Vanceril MDIs containing beclomethasone dipropionate (BDP) was used throughout. MDIs were sampled into NGI and ACI in accordance with USP recommendations, at 30.0 and 28.3 L/min, respectively, following 1, 2, 6, and 30 actuations with or without a silicone cup or stage coating, to determine the apparent particle size distributions (PSD) of BDP. The mass balance and the statistical comparability of drug deposits were assured on a "per actuation basis" across all experiments, demonstrating "good cascade impactor practices." Interstage deposition or "wall losses" in NGI were found to be lower than those in ACI, although their determination was laborious in NGI. The PSD profiles for Vanceril from a single actuation were distinguishable between NGI and ACI, when uncoated collection surfaces were used, most specifically for drug mass <4-microm aerodynamic diameter (p < 0.05). Silicone coating of collection surfaces and an increased number of actuations were shown to result in PSD profile shifts for both NGI and ACI. Such effects were most pronounced for NGI, although coating the collection surfaces and/or increasing the number of actuations improved drug retention significantly on the upper stages of NGI, and thereby, minimized the effects of particle bounce of BDP from Vanceril MDIs. PSD profiles from a single actuation could be determined reliably in either of these impactors, provided that coated collection surfaces were employed; also, cumulative % mass undersize profiles were similar between instruments. However, small differences in PSD profiles still existed to support NGI's design claims for reduced "overlap" in its stage collection efficiency curves.


Subject(s)
Bronchodilator Agents/chemistry , Drug Delivery Systems/instrumentation , Metered Dose Inhalers/standards , Administration, Intranasal , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/standards , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...