Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R608-16, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20042690

ABSTRACT

We examined some of the potential mechanisms lungfish (Protopterus dolloi) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed ( approximately 10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi, the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a approximately 2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi, and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi.


Subject(s)
Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Estivation/physiology , Fishes/physiology , Mitochondria/enzymology , Animals , Cardiolipins/metabolism , Energy Metabolism/physiology , Gene Expression Regulation, Enzymologic/physiology , Liver/metabolism , Mitochondrial Membranes/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
2.
Article in English | MEDLINE | ID: mdl-17561424

ABSTRACT

Many populations of Arctic char (Salvelinus alpinus) are land-locked, physically separated from the ocean by natural barriers and unable to migrate to sea like anadromous populations. Previous studies which experimentally transferred land-locked Arctic char to seawater report high mortality rates due to osmoregulatory failure and an inability to up-regulate gill Na(+),K(+)-ATPase activity. This study examined the mRNA expression of two recently discovered alpha-subunit isoforms of gill Na(+)K(+)-ATPase (alpha1a and alpha1b) during seawater exposure of land-locked Arctic char. mRNA levels of these gill Na(+),K(+)-ATPasealpha-subunit isoforms were compared to Na(+),K(+)-ATPase activity and protein levels and related to osmoregulatory performance. Land-locked Arctic char were unable to regulate plasma osmolality following seawater exposure. Seawater exposure did not induce an increase in gill Na(+),K(+)-ATPase activity or protein levels. Na(+),K(+)-ATPase isoform alpha1a mRNA quickly decreased upon exposure to seawater, while isoform alpha1b levels were unchanged. These results suggest the inability of land-locked Arctic char to acclimate to seawater is due a failure to up-regulate gill Na(+),K(+)-ATPase activity which may be due to their inability to increase Na(+),K(+)-ATPase alpha1b mRNA expression.


Subject(s)
Gene Expression Regulation, Enzymologic , Gills/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Trout/metabolism , Adaptation, Physiological/genetics , Animals , Fresh Water , Isoenzymes/metabolism , Protein Subunits/metabolism , RNA, Messenger/metabolism , Seawater , Sodium-Potassium-Exchanging ATPase/genetics , Time Factors , Trout/blood , Water-Electrolyte Balance/genetics
3.
J Exp Biol ; 210(Pt 11): 1971-85, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17515422

ABSTRACT

The migration of Arctic char Salvelinus alpinus from freshwater to seawater requires a substantial reorganization of the osmoregulatory tissues to regulate plasma ion levels. These modifications have an inherent metabolic cost, which must be met through the upregulation of intermediary metabolism. Arctic char intermediary metabolism was monitored during the initial 96 h of seawater acclimation through measurement of key enzymes in gill, liver, red and white muscle as well as tissue and blood free amino acid (FAA) levels, and plasma glucose and non-esterified fatty acid content. In general, seawater exposure stimulated large changes in amino acid metabolism, but no change in lipid or carbohydrate metabolism. White muscle FAA content increased significantly following seawater exposure, with levels of essential FAAs doubling after 96 h. Similar increases were seen in the plasma, suggesting a rapid mobilization of FAAs to the circulation. These changes were accompanied by significant increases in the activities of enzymes involved in amino acid metabolism in the gill, liver, red and white muscle, suggesting seawater-acclimated fish have an enhanced capacity for energy production from amino acids. Increased energy requirements were evident in the gill of seawater-acclimated char, as citrate synthase activity increased significantly. The results of this study suggest a rapid upregulation of amino acid metabolism may be critical for the successful acclimation of Arctic char to seawater.


Subject(s)
Acclimatization , Seawater , Trout/physiology , Amino Acids/blood , Animals , Blood Glucose , Fatty Acids/blood
4.
Physiol Biochem Zool ; 80(3): 270-82, 2007.
Article in English | MEDLINE | ID: mdl-17390283

ABSTRACT

The successful acclimation of eurhyhaline fishes from seawater to freshwater requires the gills to stop actively secreting ions and start actively absorbing ions. Gill Na(+),K(+)-ATPase is known to be an integral part of the active ion secretion model of marine fishes, but its importance in the active ion uptake model of freshwater fishes is less clear. This study, conducted in the high Arctic, examines gill Na(+),K(+)-ATPase regulation in wild anadromous arctic char returning to freshwater from the ocean. Gill Na(+),K(+)-ATPase activity, protein expression, and mRNA expression of Na(+),K(+)-ATPase isoforms alpha 1a and alpha 1b were monitored in arctic char at three points along their migration route to and from Somerset Island, Nunavut, Canada: out at sea (Whaler's Point), in seawater near the river mouth (Nat's Camp), and after entering the Union River. Arctic char collected from the Union River had more than twofold greater gill Na(+),K(+)-ATPase activity. This was associated with a significant increase (threefold) in Na(+),K(+)-ATPase isoform alpha 1a mRNA expression and a significant increase in plasma sodium and osmolality levels compared with seawater char. Compared with char sampled from Whaler's Point, Na(+),K(+)-ATPase isoform alpha 1b mRNA expression was decreased by approximately 50% in char sampled at Nat's Camp and the Union River. These results suggest that the upregulation of gill Na(+),K(+)-ATPase activity is involved in freshwater acclimation of arctic char and implicate a role for Na(+),K(+)-ATPase isoform alpha 1a in this process. In addition, we discuss evidence that arctic char go through a preparatory phase, or "reverse smoltification," before entering freshwater.


Subject(s)
Animal Migration/physiology , Fresh Water , Gills/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Trout/physiology , Animals , Animals, Wild , Enzyme Induction , Osmolar Concentration , Protein Isoforms , RNA, Messenger/metabolism
5.
Am J Physiol Regul Integr Comp Physiol ; 292(2): R1043-51, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17038447

ABSTRACT

The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.


Subject(s)
Acclimatization/physiology , Gills/enzymology , Membrane Lipids/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Trout/physiology , Animals , Cholesterol/metabolism , Fatty Acids/metabolism , Fresh Water , Gills/metabolism , Membrane Potentials/physiology , Osmolar Concentration , Phospholipids/metabolism , RNA, Messenger/biosynthesis , Seawater
6.
J Exp Biol ; 209(Pt 10): 1848-58, 2006 May.
Article in English | MEDLINE | ID: mdl-16651551

ABSTRACT

The upregulation of gill Na+/K+-ATPase activity is considered critical for the successful acclimation of salmonid fishes to seawater. The present study examines the mRNA expression of two recently discovered alpha-subunit isoforms of Na+/K+-ATPase (alpha1a and alpha1b) in gill during the seawater acclimation of three species of anadromous salmonids, which vary in their salinity tolerance. Levels of these Na+/K+-ATPase isoforms were compared with Na+/K+-ATPase activity and protein abundance and related to the seawater tolerance of each species. Atlantic salmon (Salmo salar) quickly regulated plasma Na+, Cl- and osmolality levels within 10 days of seawater exposure, whereas rainbow trout (Oncorhynchus mykiss) and Arctic char (Salvelinus alpinus) struggled to ionoregulate, and experienced greater perturbations in plasma ion levels for a longer period of time. In all three species, mRNA levels for the alpha1a isoform quickly decreased following seawater exposure whereas alpha1b levels increased significantly. All three species displayed similar increases in gill Na+/K+-ATPase activity during seawater acclimation, with levels rising after 10 and 30 days. Freshwater Atlantic salmon gill Na+/K+-ATPase activity and protein content was threefold higher than those of Arctic char and rainbow trout, which may explain their superior seawater tolerance. The role of the alpha1b isoform may be of particular importance during seawater acclimation of salmonid fishes. The reciprocal expression of Na+/K+-ATPase isoforms alpha1a and alpha1b during seawater acclimation suggests they may have different roles in the gills of freshwater and marine fishes; ion uptake in freshwater fish and ion secretion in marine fishes.


Subject(s)
Acclimatization/physiology , Gene Expression Regulation, Enzymologic , Gills/enzymology , Salmonidae/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Acclimatization/genetics , Animals , Isoenzymes/metabolism , Protein Subunits/metabolism , RNA, Messenger/metabolism , Seawater/chemistry , Sodium Chloride/chemistry , Sodium Chloride/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...