Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; : 7539-7547, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023916

ABSTRACT

Ionic liquids (ILs) are an exciting class of electrolytes finding applications in many areas from energy storage to solvents, where they have been touted as "designer solvents" as they can be mixed to precisely tailor the physiochemical properties. As using machine learning interatomic potentials (MLIPs) to simulate ILs is still relatively unexplored, several questions need to be answered to see if MLIPs can be transformative for ILs. Since ILs are often not pure, but are either mixed together or contain additives, we first demonstrate that a MLIP can be trained to be compositionally transferable; i.e., the MLIP can be applied to mixtures of ions not directly trained on, while only being trained on a few mixtures of the same ions. We also investigated the accuracy of MLIPs for a novel IL, which we experimentally synthesize and characterize. Our MLIP trained on ∼200 DFT frames is in reasonable agreement with our experiments and DFT.

2.
J Chem Theory Comput ; 18(4): 2180-2192, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35235322

ABSTRACT

Machine learning (ML) has recently gained attention as a means to develop more accurate exchange-correlation (XC) functionals for density functional theory, but functionals developed thus far need to be improved on several metrics, including accuracy, numerical stability, and transferability across chemical space. In this work, we introduce a set of nonlocal features of the density called the CIDER formalism, which we use to train a Gaussian process model for the exchange energy that obeys the critical uniform scaling rule for exchange. The resulting CIDER exchange functional is significantly more accurate than any semilocal functional tested here, and it has good transferability across main-group molecules. This work therefore serves as an initial step toward more accurate exchange functionals, and it also introduces useful techniques for developing robust, physics-informed XC models via ML.


Subject(s)
Machine Learning , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...