Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 77(7): 3107-3115, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33638268

ABSTRACT

BACKGROUND: Prebaiting is a technique involving early deployment of 'unarmed' devices (e.g. baits and traps) to increase efficacy of wildlife management. Although commonly used, the mechanisms by which prebaiting works are poorly understood. We propose three mechanisms by which prebaiting may increase device interaction probabilities; (1) overcoming neophobia towards novel devices, (2) a 'trickle in' effect increasing time for animals to encounter devices; and (3) social information transfer about rewards associated with devices. We conducted a survey of 100 articles to understand how prebaiting has been used. We then tested our proposed prebaiting mechanisms using a global pest (black rats, Rattus rattus) examining how uniquely marked free-living rats responded to a common yet novel monitoring technique (tracking tunnels). RESULTS: No studies in our dataset tested how prebaiting functioned. Most studies (61%) did not propose a mechanism for prebaiting, but overcoming neophobia was most commonly mentioned. We only found partial support for the overcoming neophobia hypothesis in our field test. We found the dominant mechanism operating in our system to be the 'trickle in' effect with the proportion of individuals visiting the device increasing over time. We found no support for social information transfer as a mechanism of prebaiting. CONCLUSION: Applying a mechanistic understanding of how prebaiting functions will improve the efficacy of management devices. Our results suggest that prebaiting allows time for more rats to encounter a device, hence surveys in our system would benefit from long prebaiting periods. © 2021 Society of Chemical Industry.


Subject(s)
Animals, Wild , Animals , Rats
2.
Glob Chang Biol ; 25(5): 1685-1695, 2019 05.
Article in English | MEDLINE | ID: mdl-30822357

ABSTRACT

Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multilevel naiveté framework suggests that animals can progress through levels of naiveté toward predator awareness. Alternatively, native prey may be preadapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free-living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate antipredator behavior toward fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time frame, driven by experience with predators, thus supporting the multilevel naiveté framework.


Subject(s)
Behavior, Animal/physiology , Introduced Species , Marsupialia/physiology , Recognition, Psychology/physiology , Adaptation, Biological , Animals , Australia , Cues , Foxes/physiology , Odorants
3.
Proc Biol Sci ; 285(1885)2018 08 22.
Article in English | MEDLINE | ID: mdl-30135153

ABSTRACT

Prey naiveté is a failure to recognize novel predators and thought to cause exaggerated impacts of alien predators on native wildlife. Yet there is equivocal evidence in the literature for native prey naiveté towards aliens. To address this, we conducted a meta-analysis of Australian mammal responses to native and alien predators. Australia has the world's worst record of extinction and declines of native mammals, largely owing to two alien predators introduced more than 150 years ago: the feral cat, Felis catus, and European red fox, Vulpes vulpes Analysis of 94 responses to predator cues shows that Australian mammals consistently recognize alien foxes as a predation threat, possibly because of thousands of years of experience with another canid predator, the dingo, Canis lupus dingo We also found recognition responses towards cats; however, in four of the seven studies available, these responses were of risk-taking behaviour rather than antipredator behaviour. Our results suggest that a simple failure to recognize alien predators is not behind the ongoing exaggerated impacts of alien predators in Australia. Instead, our results highlight an urgent need to better understand the appropriateness of antipredator responses in prey towards alien predators in order to understand native prey vulnerability.


Subject(s)
Cats/physiology , Food Chain , Foxes/physiology , Marsupialia/physiology , Predatory Behavior , Recognition, Psychology , Animals , Australia , Cues , Macropodidae/physiology , Phylogeny , Trichosurus/physiology
4.
Sci Rep ; 6: 30078, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27416966

ABSTRACT

Introduced predators have caused declines and extinctions of native species worldwide, seemingly able to find and hunt new, unfamiliar prey from the time of their introduction. Yet, just as native species are often naïve to introduced predators, in theory, introduced predators should initially be naïve in their response to novel native prey. Here we examine the response of free-living introduced red foxes (Vulpes vulpes) to their first encounter with the odour cues of a novel native prey, the long-nosed bandicoot (Perameles nasuta). Despite no experience with bandicoots at the study site, foxes were significantly more interested in bandicoot odour compared to untreated controls and to a co-evolved prey, the black rat (Rattus rattus). So what gives introduced predators a novelty advantage over native prey? Such neophilia towards novel potential food sources carries little costs, however naïve native prey often lack analogous neophobic responses towards novel predators, possibly because predator avoidance is so costly. We propose that this nexus between the costs and benefits of responding to novel information is different for alien predators and native prey, giving alien predators a novelty advantage over native prey. This may explain why some introduced predators have rapid and devastating impacts on native fauna.


Subject(s)
Cues , Foxes/physiology , Introduced Species , Murinae/physiology , Odorants , Predatory Behavior/physiology , Animals , Food Chain , Population Dynamics
5.
Biol Lett ; 12(5)2016 05.
Article in English | MEDLINE | ID: mdl-27194283

ABSTRACT

Many studies have reported the aversive reactions of prey towards a predator's odour signals (e.g. urine marks), a behaviour widely thought to reduce the risk of predation by the predator. However, because odour signals persist in the environment, they are vulnerable to exploitation and eavesdropping by predators, prey and conspecifics. As such, scent patches created by one species might attract other species interested in information about their enemies. We studied this phenomenon by examining red fox investigation of odours from conspecifics and competing species in order to understand what prey are responding to when avoiding the odours of a predator. Surprisingly, foxes showed limited interest in conspecific odours but were highly interested in the odours of their competitors (wild dogs and feral cats), suggesting that odours are likely to play an important role in mediating competitive interactions. Importantly, our results identify that simple, dyadic interpretations of prey responses to a predator odour (i.e. cat odour = risk of cat encounter = fear of cats) can no longer be assumed in ecological or psychology research. Instead, interactions mediated by olfactory cues are more complex than previously thought and are likely to form a complicated olfactory web of interactions.


Subject(s)
Foxes/physiology , Odorants , Predatory Behavior/physiology , Animals , Cats/urine , Cues , Dogs/urine , Female , Foxes/urine , Male , Victoria
6.
J Anim Ecol ; 80(4): 742-52, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21401592

ABSTRACT

1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.


Subject(s)
Cues , Odorants , Predatory Behavior , Smell , Animals , Arachis , Mice , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL
...