Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microbiome ; 11(1): 249, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953319

ABSTRACT

BACKGROUND: Reports regarding the presence of bacteria in the fetal environment remain limited and controversial. Recently, extracellular vesicles secreted by the human gut microbiota have emerged as a novel mechanism for host-microbiota interaction. We aimed to investigate the presence of bacterial extracellular vesicles in the fetal environment during healthy pregnancies and determine whether extracellular vesicles derived from the gut microbiota can cross biological barriers to reach the fetus. RESULTS: Bacterial extracellular vesicles were detectable in the amniotic fluid of healthy pregnant women, exhibiting similarities to extracellular vesicles found in the maternal gut microbiota. In pregnant mice, extracellular vesicles derived from human maternal gut microbiota were found to reach the intra-amniotic space. CONCLUSIONS: Our findings reveal maternal microbiota-derived extracellular vesicles as an interaction mechanism between the maternal microbiota and fetus, potentially playing a pivotal role in priming the prenatal immune system for gut colonization after birth. Video Abstract.


Subject(s)
Extracellular Vesicles , Gastrointestinal Microbiome , Microbiota , Pregnancy , Female , Humans , Mice , Animals , Fetus/microbiology , Amniotic Fluid/microbiology , Bacteria
2.
Front Mol Neurosci ; 16: 1227655, 2023.
Article in English | MEDLINE | ID: mdl-37781094

ABSTRACT

Introduction: Knowledge on the human gut microbiota in health and disease continues to rapidly expand. In recent years, changes in the gut microbiota composition have been reported as a part of the pathology in numerous neurodegenerative diseases. Bacterial extracellular vesicles (EVs) have been suggested as a novel mechanism for the crosstalk between the brain and gut microbiota, physiologically connecting the observed changes in the brain to gut microbiota dysbiosis. Methods: Publications reporting findings on bacterial EVs passage through the blood-brain barrier were identified in PubMed and Scopus databases. Results: The literature search yielded 138 non-duplicate publications, from which 113 records were excluded in title and abstract screening step. From 25 publications subjected to full-text screening, 8 were excluded. The resulting 17 publications were considered for the review. Discussion: Bacterial EVs have been described with capability to cross the blood-brain barrier, but the mechanisms behind the crossing remain largely unknown. Importantly, very little data exists in this context on EVs secreted by the human gut microbiota. This systematic review summarizes the present evidence of bacterial EVs crossing the blood-brain barrier and highlights the importance of future research on gut microbiota-derived EVs in the context of gut-brain communication across the blood-brain barrier.

3.
Methods Mol Biol ; 2668: 211-226, 2023.
Article in English | MEDLINE | ID: mdl-37140799

ABSTRACT

Commensal microbiota has huge impact on the maintenance of human health, its dysregulation being associated with the development of a plethora of diseases. Release of bacterial extracellular vesicles (BEVs) is a fundamental mechanism of systemic microbiome influence on the host organism. Nevertheless, due to the technical challenges of isolation methods, BEV composition and functions remain poorly characterized. Hereby, we describe the up-to-date protocol for isolation of BEV-enriched samples from human feces. Fecal extracellular vesicles (EVs) are purified through the orthogonal implementation of filtration, size-exclusion chromatography (SEC), and density gradient ultracentrifugation. EVs are first separated from bacteria, flagella, and cell debris by size. In the next steps, BEVs are separated from host-derived EVs by density. The quality of vesicle preparation is estimated via immuno-TEM (transmission electron microscopy) for the presence of vesicle-like structures expressing EV markers and via NTA (nanoparticle tracking analysis) for assaying particle concentration and size. Distribution of EVs of human origin in gradient fractions is estimated using antibodies against human exosomal markers with Western blot and ExoView R100 imaging platform. The enrichment for BEVs in vesicle preparation is estimated by Western blot for the presence of bacterial OMVs (outer membrane vesicles) marker and OmpA (outer membrane protein A). Taken together, our study describes a detailed protocol for EV preparation with enrichment for BEVs from feces with a purity level suitable for bioactivity functional assays.


Subject(s)
Extracellular Vesicles , Nanoparticles , Humans , Extracellular Vesicles/metabolism , Microscopy, Electron, Transmission , Feces , Bacteria , Ultracentrifugation
4.
J Biol Chem ; 298(3): 101721, 2022 03.
Article in English | MEDLINE | ID: mdl-35151685

ABSTRACT

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm-/- mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm-/- mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.


Subject(s)
Blood-Brain Barrier , Infarction, Middle Cerebral Artery , Neuroinflammatory Diseases , Prolyl Hydroxylases , Stroke , Animals , Blood-Brain Barrier/enzymology , Blood-Brain Barrier/metabolism , Cell Membrane Permeability , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infarction, Middle Cerebral Artery/enzymology , Infarction, Middle Cerebral Artery/metabolism , Mice , Neuroinflammatory Diseases/enzymology , Neuroinflammatory Diseases/metabolism , Permeability , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Stroke/enzymology , Stroke/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33298456

ABSTRACT

Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm-/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm-/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm-/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm-/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.


Subject(s)
Astrocytes , Calcium Signaling , Astrocytes/metabolism , Humans , Hypoxia , Procollagen-Proline Dioxygenase/metabolism , Prolyl Hydroxylases
6.
PLoS One ; 15(5): e0233261, 2020.
Article in English | MEDLINE | ID: mdl-32413092

ABSTRACT

The transcription factor Hypoxia-inducible factor 1 (HIF-1) plays a pivotal role in tissue regeneration. HIF-1 is negatively controlled by O2-dependent prolyl hydroxylases with a predominant role of prolyl hydroxylase 2 isoform (Phd2). Transgenic mice, hypomorphic for this isoform, accumulate more HIF-1 under normoxic conditions. Using these mice, we investigated the influence of Phd2 and HIF-1 on the regenerative capability of skeletal muscle tissue after myotrauma. Phd2-hypomorphic and wild type mice (on C57Bl/6 background) were grouped with regeneration times from 6 to 168 hours after closed mechanic muscle trauma to the hind limb. Tissue samples were analysed by immuno-staining and real-time PCR. Bone marrow derived macrophages of wild type and Phd2-hypomorphic mice were isolated and analysed via flow cytometry and quantitative real-time PCR. Phd2 reduction led to a higher regenerative capability due to enhanced activation of myogenic factors accompanied by induction of genes responsible for glucose and lactate metabolism in Phd2-hypomorphic mice. Macrophage infiltration into the trauma areas in hypomorphic mice started earlier and was more pronounced compared to wild type mice. Phd2-hypomorphic mice also showed higher numbers of macrophages in areas with sustained trauma 72 hours after myotrauma application. In conclusion, we postulate that the HIF-1 pathway is activated secondary to a Phd2 reduction which may lead to i) higher activation of myogenic factors, ii) increased number of positive stem cell proliferation markers, and iii) accelerated macrophage recruitment to areas of trauma, resulting in faster muscle tissue regeneration after myotrauma. With the current development of prolyl hydroxylase domain inhibitors, our findings point towards a potential clinical benefit after myotrauma.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/deficiency , Muscle, Skeletal/physiology , Regeneration/physiology , Soft Tissue Injuries/physiopathology , Animals , Cell Proliferation/physiology , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Random Allocation , Vascular Endothelial Growth Factor A/metabolism
7.
Hum Mol Genet ; 28(19): 3309-3322, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31294445

ABSTRACT

The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.


Subject(s)
Brain/growth & development , Glutamate Decarboxylase/genetics , Interneurons/metabolism , Lysosomal Membrane Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Animals , Brain/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Neuronal Ceroid-Lipofuscinoses/metabolism , Neurons/cytology , Neurons/metabolism , Parvalbumins/metabolism , Repressor Proteins/genetics , Tubulin/metabolism
8.
iScience ; 13: 284-304, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30875610

ABSTRACT

The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.

9.
Carcinogenesis ; 33(10): 1976-84, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22791810

ABSTRACT

The adaptor protein regulator for ubiquitous kinase/c-Cbl-interacting protein of 85kDa (Ruk/CIN85) was found to modulate HER1/EGFR signaling and processes like cell adhesion and apoptosis. Although these features imply a role in carcinogenesis, it is so far unknown how and by which molecular mechanisms Ruk/CIN85 could affect a certain tumor phenotype. By analyzing samples from breast cancer patients, we found high levels of Ruk(l)/CIN85 especially in lymph node metastases from patients with invasive breast adenocarcinomas, suggesting that Ruk(l)/CIN85 contributes to malignancy. Expression of Ruk(l)/CIN85 in weakly invasive breast adenocarcinoma cells deficient of Ruk(l)/CIN85 indeed converted them into more malignant cells. In particular, Ruk(l)/CIN85 reduced the growth rate, decreased cell adhesion, enhanced anchorage-independent growth, increased motility in both transwell migration and wound healing assays as well as affected the response to epidermal growth factor. Thereby, Ruk(l)/CIN85 led to a more rapid and prolonged epidermal growth factor-dependent activation of Src, Akt and ERK1/2 and treatment with the Src inhibitor PP2 and the PI3K inhibitor LY294002 abolished the Ruk(l)/CIN85-dependent changes in cell motility. Together, this study indicates that high levels of Ruk(l)/CIN85 contribute to the conversion of breast adenocarcinoma cells into a more malignant phenotype via modulation of the Src/Akt pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Adhesion , Cell Movement , Female , Humans , MAP Kinase Signaling System , Oncogene Protein pp60(v-src)/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Brain ; 133(11): 3166-80, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20884644

ABSTRACT

Synaptic inhibition is a central factor in the fine tuning of neuronal activity in the central nervous system. Symptoms consistent with reduced inhibition such as stiffness, spasms and anxiety occur in paraneoplastic stiff person syndrome with autoantibodies against the intracellular synaptic protein amphiphysin. Here we show that intrathecal application of purified anti-amphiphysin immunoglobulin G antibodies induces stiff person syndrome-like symptoms in rats, including stiffness and muscle spasms. Using in vivo recordings of Hoffmann reflexes and dorsal root potentials, we identified reduced presynaptic GABAergic inhibition as an underlying mechanism. Anti-amphiphysin immunoglobulin G was internalized into neurons by an epitope-specific mechanism and colocalized in vivo with presynaptic vesicular proteins, as shown by stimulation emission depletion microscopy. Neurons from amphiphysin deficient mice that did not internalize the immunoglobulin provided additional evidence of the specificity in antibody uptake. GABAergic synapses appeared more vulnerable than glutamatergic synapses to defective endocytosis induced by anti-amphiphysin immunoglobulin G, as shown by increased clustering of the endocytic protein AP180 and by defective loading of FM 1-43, a styryl dye used to label cell membranes. Incubation of cultured neurons with anti-amphiphysin immunoglobulin G reduced basal and stimulated release of γ-aminobutyric acid substantially more than that of glutamate. By whole-cell patch-clamp analysis of GABAergic inhibitory transmission in hippocampus granule cells we showed a faster, activity-dependent decrease of the amplitude of evoked inhibitory postsynaptic currents in brain slices treated with antibodies against amphiphysin. We suggest that these findings may explain the pathophysiology of the core signs of stiff person syndrome at the molecular level and show that autoantibodies can alter the function of inhibitory synapses in vivo upon binding to an intraneuronal key protein by disturbing vesicular endocytosis.


Subject(s)
Autoantibodies/therapeutic use , Nerve Tissue Proteins/immunology , Neural Inhibition/immunology , Stiff-Person Syndrome/immunology , Stiff-Person Syndrome/therapy , gamma-Aminobutyric Acid/metabolism , Aged , Animals , Autoantibodies/administration & dosage , Autoantibodies/physiology , Cells, Cultured , Endocytosis/immunology , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/administration & dosage , Immunoglobulin G/physiology , Immunoglobulin G/therapeutic use , Inhibitory Postsynaptic Potentials/physiology , Injections, Spinal , Mice , Mice, Knockout , Middle Aged , Rats , Rats, Inbred Lew , Stiff-Person Syndrome/pathology , gamma-Aminobutyric Acid/deficiency
11.
Exp Transl Stroke Med ; 1: 4, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-20142991

ABSTRACT

The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent.

12.
Cell Signal ; 20(1): 154-62, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18006272

ABSTRACT

Thrombopoietin (TPO), a hematopoietic growth factor regulating platelet production, and its receptor (TPOR) were recently shown to be expressed in the brain where they exert proapoptotic activity. Here we used PC12 cells, an established model of neuronal differentiation, to investigate the effects of TPO on neuronal survival and differentiation. These cells expressed TPOR mRNA. TPO increased cell death in neuronally differentiated PC12 cells but had no effect in undifferentiated cells. Surprisingly, TPO inhibited nerve growth factor (NGF)-induced differentiation of PC12 cells in a dose- and time-dependent manner. This inhibition was dependent on the activity of Janus kinase-2 (JAK2). Using phospho-kinase arrays and Western blot we found downregulation of the NGF-stimulated phosphorylation of the extracellular signal-regulated kinase p42ERK by TPO with no effect on phosphorylation of Akt or stress kinases. NGF-induced phosphorylation of ERK-activating kinases, MEK1/2 and C-RAF was also reduced by TPO while NGF-induced RAS activation was not attenuated by TPO treatment. In contrast to its inhibitory effects on NGF signalling, TPO had no effect on epidermal growth factor (EGF)-stimulated ERK phosphorylation or proliferation of PC12 cells. Our data indicate that TPO via activation of its receptor-bound JAK2 delays the NGF-dependent acquisition of neuronal phenotype and decreases neuronal survival by suppressing NGF-induced ERK activity.


Subject(s)
Cell Differentiation/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Nerve Growth Factor/physiology , Neurons/cytology , Signal Transduction , Thrombopoietin/physiology , Animals , Cell Survival/drug effects , Epidermal Growth Factor/physiology , MAP Kinase Kinase 1/metabolism , Neurons/physiology , PC12 Cells , Proto-Oncogene Proteins c-raf/metabolism , Rats , ras Proteins/metabolism
13.
Neurochem Res ; 31(10): 1219-30, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17021950

ABSTRACT

Correct timing and spatial location of growth factor expression is critical for undisturbed brain development and functioning. In terminally differentiated cells distinct biological responses to growth factors may depend on cell type specific activation of signalling cascades. We show that the hematopoietic growth factors thrombopoietin (TPO) and granulocyte colony-stimulating factor (GCSF) exert cell type specific effects on survival, proliferation and the degree of phosphorylation of Akt1, ERK1/2 and STAT3 in rat hippocampal neurons and cortical astrocytes. In neurons, TPO induced cell death and selectively activated ERK1/2. GCSF protected neurons from TPO- and hypoxia-induced cell death via selective activation of Akt1. In astrocytes, neither TPO nor GCSF had any effect on cell viability but inhibited proliferation. This effect was accompanied by activation of ERK1/2 and inhibition of STAT3 activity. A balance between growth factors, their receptors and signalling proteins may play an important role in regulation of neural cell survival.


Subject(s)
Astrocytes/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Signal Transduction/drug effects , Thrombopoietin/pharmacology , Animals , Astrocytes/metabolism , Blotting, Western , Cells, Cultured , Fluorescent Antibody Technique , Hippocampus/cytology , Hippocampus/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurons/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...