Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831016

ABSTRACT

Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.

2.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743552

ABSTRACT

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Subject(s)
Embolism , Groundwater , Water/physiology , Wood/physiology , Xylem/physiology , Plants , Plant Leaves/physiology , Droughts
3.
Nat Commun ; 14(1): 3948, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402725

ABSTRACT

Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories - the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis - are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.


Subject(s)
Ecosystem , Plants , Climate Change , Plant Leaves , Phenotype
4.
Sci Adv ; 9(14): eadd8553, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018407

ABSTRACT

As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.


Subject(s)
Magnoliopsida , Humans , Phylogeny , Climate Change , Biodiversity
5.
Ecol Evol ; 13(3): e9940, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36993150

ABSTRACT

Empirical evidence shows that early arrival of native species, which induces the priority effects, can contribute to invasive plant species containment. However, more systematic studies are required to test the applied relevance of the priority effect. This study therefore aimed at testing the priority effects generated by different sowing times of seeds of nine native species on one target invasive plant species, that is, Giant ragweed (Ambrosia trifida). This study hypothesized that, when sown earlier, some native species will be able to substantially contain A. trifida through resource preemption. An additive competition design was used to test the competitive effects of native species on A. trifida. Depending on the sowing times of native and invasive plant species, three priority treatments were conducted: all species sown at the same time (T1); native species sown 3 weeks before A. trifida (T2); and native species sown 6 weeks before A. trifida (T3). Priority effects created by all nine native species significantly affected the invasibility of A. trifida. The average value of the relative competition index (RCIavg) of A. trifida was the highest when native seeds were sown 6 weeks early and decreased with decreasing early sowing time of native plants. The species identity effect was not significant on RCIavg if natives were sown at the same time or 3 weeks earlier than A. trifida invasion, but it was significant (p = .0123) if they were sown 6 weeks earlier than A. trifida. Synthesis and applications. The findings of this study clearly show that native species, when sown early, provide strong competition and resist invasion through prior utilization of resources. The consideration of this knowledge might improve A. trifida invasion management practices.

6.
Sci Data ; 9(1): 755, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477373

ABSTRACT

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca. 1 million trait records received via the TRY database (representing ca. 2,500 original publications) and additional unpublished data. It provides 92,159 species mean values for the six traits, covering 46,047 species. The data are complemented by higher-level taxonomic classification and six categorical traits (woodiness, growth form, succulence, adaptation to terrestrial or aquatic habitats, nutrition type and leaf type). Data quality management is based on a probabilistic approach combined with comprehensive validation against expert knowledge and external information. Intense data acquisition and thorough quality control produced the largest and, to our knowledge, most accurate compilation of empirically observed vascular plant species mean traits to date.

7.
Oecologia ; 200(1-2): 221-230, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36153377

ABSTRACT

Sicyos angulatus is a serious threat to riverine ecosystem functions and services worldwide. Here, we studied the effect of species identity and diversity on biotic resistance to S. angulatus under two different soil nutrient levels (unfertilized vs. fertilized). Soil nutrient levels showed no significant effect on invasion by S. angulatus in the control treatment, where intervention by native plants was absent. Species identity of native plants and its interaction with soil nutrient levels had a significant effect on biotic resistance to S. angulatus. For instance, Pennisetum alopecuroides and Lespedeza cuneata best resisted invasion in fertilized soil, whereas Lespedeza bicolor and Lactuca indica best resisted invasion in unfertilized soil. In addition, a mixture of four plant species resisted invasion equally as well as the monoculture of a species in unfertilized soil, whereas the mixed treatment resisted invasion much better in fertilized soil compared with unfertilized soil. Structural equation modeling revealed that species identity and diversity as well as fertilizer application significantly influenced biotic resistance to S. angulatus invasion, while soil nutrients did not influence invasion success directly. Based on these results, we strongly suggest sowing seed mixtures of various species after eradicating S. angulatus plants to prevent re-invasion. Overall, these results demonstrate how native plants rely on resource availability to resist colonization by an invasive plant, such as S. angulatus. This information can be used for the development of improved guidelines for plant restoration and invasive species control.


Subject(s)
Introduced Species , Soil , Ecosystem , Fertilizers , Nutrients , Plants , Soil/chemistry
8.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35709320

ABSTRACT

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Subject(s)
Anthropogenic Effects , Biodiversity , Conservation of Natural Resources , Ecosystem , Trees , Conservation of Natural Resources/methods , Humans , Phylogeny , Trees/classification
9.
Nat Ecol Evol ; 6(1): 36-50, 2022 01.
Article in English | MEDLINE | ID: mdl-34949824

ABSTRACT

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land-climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.


Subject(s)
Ecosystem , Soil , Phenotype , Plant Leaves , Plants
10.
Nat Ecol Evol ; 5(8): 1123-1134, 2021 08.
Article in English | MEDLINE | ID: mdl-34112996

ABSTRACT

Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.


Subject(s)
Forests , Plant Dispersal , Climate , Phenotype , Water
11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050023

ABSTRACT

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Subject(s)
Introduced Species , Phylogeography , Plants/classification , Ecosystem , Europe
12.
Ecol Appl ; 30(3): e02064, 2020 04.
Article in English | MEDLINE | ID: mdl-31872519

ABSTRACT

The leaf economic spectrum is a widely studied axis of plant trait variability that defines a trade-off between leaf longevity and productivity. While this has been investigated at the global scale, where it is robust, and at local scales, where deviations from it are common, it has received less attention at the intermediate scale of plant functional types (PFTs). We investigated whether global leaf economic relationships are also present within the scale of plant functional types (PFTs) commonly used by Earth System models, and the extent to which this global-PFT hierarchy can be used to constrain trait estimates. We developed a hierarchical multivariate Bayesian model that assumes separate means and covariance structures within and across PFTs and fit this model to seven leaf traits from the TRY database related to leaf longevity, morphology, biochemistry, and photosynthetic metabolism. Although patterns of trait covariation were generally consistent with the leaf economic spectrum, we found three approximate tiers to this consistency. Relationships among morphological and biochemical traits (specific leaf area [SLA], N, P) were the most robust within and across PFTs, suggesting that covariation in these traits is driven by universal leaf construction trade-offs and stoichiometry. Relationships among metabolic traits (dark respiration [Rd ], maximum RuBisCo carboxylation rate [Vc,max ], maximum electron transport rate [Jmax ]) were slightly less consistent, reflecting in part their much sparser sampling (especially for high-latitude PFTs), but also pointing to more flexible plasticity in plant metabolistm. Finally, relationships involving leaf lifespan were the least consistent, indicating that leaf economic relationships related to leaf lifespan are dominated by across-PFT differences and that within-PFT variation in leaf lifespan is more complex and idiosyncratic. Across all traits, this covariance was an important source of information, as evidenced by the improved imputation accuracy and reduced predictive uncertainty in multivariate models compared to univariate models. Ultimately, our study reaffirms the value of studying not just individual traits but the multivariate trait space and the utility of hierarchical modeling for studying the scale dependence of trait relationships.


Subject(s)
Plant Leaves , Plants , Bayes Theorem , Multivariate Analysis , Photosynthesis
13.
Environ Int ; 134: 105251, 2020 01.
Article in English | MEDLINE | ID: mdl-31711014

ABSTRACT

The introduction of Phragmites australis is known to substantially increase methane emission in the tidal salt marsh. Previous studies suggested that enhanced carbon input by the introduction may stimulate methanogenic activity. However, the exact mechanisms and the effects of the introduction of P. australis to methane dynamics in the deep soil layer are still unclear. In this study we collected 1 m deep intact soil cores and gas samples at native Suaeda japonica- and P. australis-vegetated temperate tidal salt marshes in Suncheon Bay, Republic of Korea. Rates of methane emission and vertical distribution of soil biogeochemistry and microbial communities were analyzed to understand the relationship among chemical and microbiological properties. The introduction of P. australis significantly enhanced methane emission in sites, which was caused by increased DOC and reduced competitive inhibition between sulfate reducer and methanogens. In particular, reduced competitive inhibition between sulfate reducers and methanogens in deep soil layer may play a substantial role in the enhanced methane emission by the introduction of P. australis. Potential methane production was also significantly higher in deeper soil layers than the surface soil layer. We suggest that deep soil layer plays a critical role in the methane dynamics of tidal salt marsh which is introduced by deep root plants, such as P. australis.


Subject(s)
Soil , Wetlands , Methane , Poaceae , Republic of Korea
14.
Nat Ecol Evol ; 2(11): 1808-1817, 2018 11.
Article in English | MEDLINE | ID: mdl-30349093

ABSTRACT

The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we investigate the phylogenetic distribution of livestock and crops, and compare their phenotypic traits with those of wild species. Our results indicate that phylogenetic clustering is modest for crop species but more intense for livestock. Domesticated species explore a reduced portion of the phenotypic space occupied by their wild counterparts and have particular traits in common. For example, herbaceous crops are globally characterized by traits including high leaf nitrogen concentration and tall canopies, which make them fast-growing species and proficient competitors. Livestock species are relatively large mammals with low basal metabolic rates, which indicate moderate to slow life histories. Our study therefore reveals ecological differences in domestication potential between plants and mammals. Domesticated plants belong to clades with traits that are advantageous in intensively managed high-resource habitats, whereas domesticated mammals are from clades adapted to moderately productive environments. Combining comparative phylogenetic methods with ecologically relevant traits has proven useful to unravel the causes and consequences of domestication.


Subject(s)
Animals, Domestic/genetics , Biological Evolution , Crops, Agricultural/genetics , Domestication , Animals , Animals, Domestic/classification , Crops, Agricultural/classification , Phenotype , Phylogeny
15.
Nat Ecol Evol ; 2(10): 1579-1587, 2018 10.
Article in English | MEDLINE | ID: mdl-30150740

ABSTRACT

A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.


Subject(s)
Biodiversity , Embryophyta , Grassland , Life History Traits , Biomass , Models, Biological , Phylogeny
16.
Proc Natl Acad Sci U S A ; 114(51): E10937-E10946, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29196525

ABSTRACT

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.


Subject(s)
Ecosystem , Plants , Quantitative Trait, Heritable , Environment , Geography , Models, Statistical , Plant Dispersal , Spatial Analysis
17.
Ecol Evol ; 7(7): 2181-2192, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28405282

ABSTRACT

Biotic resistance is the ability of species in a community to limit the invasion of other species. However, biotic resistance is not widely used to control invasive plants. Experimental, functional, and modeling approaches were combined to investigate the processes of invasion by Ageratina altissima (white snakeroot), a model invasive species in South Korea. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. altissima, whereas a species identity effect would be redundant within a functional group, and (2) mixtures of species would be more resistant to invasion than monocultures. We classified 37 species of native plants into three functional groups based on seven functional traits. The classification of functional groups was based primarily on differences in life longevity and woodiness. A competition experiment was conducted based on an additive competition design with A. altissima and monocultures or mixtures of resident plants. As an indicator of biotic resistance, we calculated a relative competition index (RCI avg) based on the average performance of A. altissima in a competition treatment compared with that of the control where only seeds of A. altissima were sown. To further explain the effect of diversity, we tested several diversity-interaction models. In monoculture treatments, RCI avg of resident plants was significantly different among functional groups but not within each functional group. Fast-growing annuals (FG1) had the highest RCI avg, suggesting priority effects (niche pre-emption). RCI avg of resident plants was significantly greater in a mixture than in a monoculture. According to the diversity-interaction models, species interaction patterns in mixtures were best described by interactions between functional groups, which implied niche partitioning. Functional group identity and diversity of resident plant communities were good indicators of biotic resistance to invasion by introduced A. altissima, with the underlying mechanisms likely niche pre-emption and niche partitioning. This method has most potential in assisted restoration contexts, where there is a desire to reintroduce natives or boost their population size due to some previous level of degradation.

18.
Oecologia ; 178(1): 285-96, 2015 May.
Article in English | MEDLINE | ID: mdl-25543850

ABSTRACT

With multiple species introductions and rapid global changes, there is a need for comprehensive invasion models that can predict community responses. Evidence suggests that abiotic constraint, propagule pressure, and biotic resistance of resident species each determine plant invasion success, yet their interactions are rarely tested. To understand these interactions, we conducted community assembly experiments simulating situations in which seeds of the invasive grass species Phragmites australis (Poaceae) land on bare soil along with seeds of resident wetland plant species. We used structural equation models to measure both direct abiotic constraint (here moist vs. flooded conditions) on invasion success and indirect constraint on the abundance and, therefore, biotic resistance of resident plant species. We also evaluated how propagule supply of P. australis interacts with the biotic resistance of resident species during invasion. We observed that flooding always directly reduced invasion success but had a synergistic or antagonistic effect on biotic resistance depending on the resident species involved. Biotic resistance of the most diverse resident species mixture remained strong even when abiotic conditions changed. Biotic resistance was also extremely effective under low propagule pressure of the invader. Moreover, the presence of a dense resident plant cover appeared to lower the threshold at which invasion success became stable even when propagule supply increased. Our study not only provides an analytical framework to quantify the effect of multiple interactions relevant to community assembly and species invasion, but it also proposes guidelines for innovative invasion management strategies based on a sound understanding of ecological processes.


Subject(s)
Floods , Introduced Species , Poaceae/growth & development , Seeds , Stress, Physiological , Water , Wetlands , Animals , Biomass , Ecology , Models, Biological , Plants , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...