Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 10(3): 453-468, 2024 03.
Article in English | MEDLINE | ID: mdl-38379086

ABSTRACT

Meiosis is a specialized eukaryotic division that produces genetically diverse gametes for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal exchanges, called crossovers, which recombine genetic variation. Meiotic crossovers are stringently controlled with at least one obligate exchange forming per chromosome pair, while closely spaced crossovers are inhibited by interference. In Arabidopsis, crossover positions can be explained by a diffusion-mediated coarsening model, in which large, approximately evenly spaced foci of the pro-crossover E3 ligase HEI10 grow at the expense of smaller, closely spaced clusters. However, the mechanisms that control HEI10 dynamics during meiosis remain unclear. Here, through a forward genetic screen in Arabidopsis, we identified high crossover rate3 (hcr3), a dominant-negative mutant that reduces crossover interference and increases crossovers genome-wide. HCR3 encodes J3, a co-chaperone related to HSP40, which acts to target protein aggregates and biomolecular condensates to the disassembly chaperone HSP70, thereby promoting proteasomal degradation. Consistently, we show that a network of HCR3 and HSP70 chaperones facilitates proteolysis of HEI10, thereby regulating interference and the recombination landscape. These results reveal a new role for the HSP40/J3-HSP70 chaperones in regulating chromosome-wide dynamics of recombination via control of HEI10 proteolysis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Crossing Over, Genetic , Proteolysis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Meiosis
2.
EMBO J ; 41(14): e109958, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670129

ABSTRACT

The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Crossing Over, Genetic , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Meiosis/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Methods Mol Biol ; 2484: 277-290, 2022.
Article in English | MEDLINE | ID: mdl-35461458

ABSTRACT

Meiotic recombination initiates from ~100-200 s of programmed DNA double stranded breaks (DSBs) in plants. Meiotic DSBs can be repaired using homologous chromosomes to generate a crossover . Meiotic crossover is critical for chromosomal segregation and increasing genetic variation. The number of crossovers is limited to one and three per chromosome pair in most plant species. Genetic, epigenetic, and environmental factors control crossover frequency and distribution. Due to the limited number of crossovers it is challenging to measure crossover frequency along chromosomes. We adapted fluorescence-tagged lines (FTLs ) that contain quartet1 mutations and linked transgenes expressing dsRed, eYFP, and eCFP in pollen tetrads into the deep learning-based image analysis tool, DeepTetrad. DeepTetrad enables the measurement of crossover frequency and interference by classifying 12 types of tetrads from three-color FTLs in a high-throughput manner, using conventional microscope instruments and a Linux machine. Here, we provide detailed procedures for preparing tetrad samples, tetrad imaging, running DeepTetrad, and analysis of DeepTetrad outputs. DeepTetrad-based measurements of crossover frequency and interference ratio will accelerate the genetic dissection of meiotic crossover control.


Subject(s)
Crossing Over, Genetic , Meiosis , Chromosome Segregation , Homologous Recombination , Meiosis/genetics , Pollen/genetics
4.
Nat Plants ; 7(4): 452-467, 2021 04.
Article in English | MEDLINE | ID: mdl-33846593

ABSTRACT

Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 (HCR1) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis.


Subject(s)
Arabidopsis/genetics , Amino Acid Sequence , Arabidopsis/metabolism , Crossing Over, Genetic , Meiosis , Sequence Alignment
5.
Plant J ; 101(2): 473-483, 2020 01.
Article in English | MEDLINE | ID: mdl-31536659

ABSTRACT

Meiotic crossovers facilitate chromosome segregation and create new combinations of alleles in gametes. Crossover frequency varies along chromosomes and crossover interference limits the coincidence of closely spaced crossovers. Crossovers can be measured by observing the inheritance of linked transgenes expressing different colors of fluorescent protein in Arabidopsis pollen tetrads. Here we establish DeepTetrad, a deep learning-based image recognition package for pollen tetrad analysis that enables high-throughput measurements of crossover frequency and interference in individual plants. DeepTetrad will accelerate the genetic dissection of mechanisms that control meiotic recombination.


Subject(s)
Arabidopsis/genetics , Deep Learning , Meiosis , Alleles , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosome Segregation , Chromosomes, Plant , Crossing Over, Genetic/genetics , Crossing Over, Genetic/physiology , Homologous Recombination , Pollen/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...