Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791217

ABSTRACT

The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-ß production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-ß, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-ß and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-ß. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.


Subject(s)
Epidermis , Animals , Epidermis/metabolism , Epidermis/radiation effects , Mice , Dermis/metabolism , Keratinocytes/metabolism , Macrophages/metabolism , Skin Aging/radiation effects , Skin/metabolism , Skin/radiation effects , Skin/pathology , Humans , Aging/metabolism , Transforming Growth Factor beta/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP47 Heat-Shock Proteins/metabolism , HSP47 Heat-Shock Proteins/genetics
2.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38671856

ABSTRACT

Hyperpigmentation due to ultraviolet (UV)-induced melanogenesis causes various esthetic problems. Phlorotannin (PT) and extracellular vesicles (EVs) derived from various plants suppress melanogenesis pathways. We used UV-exposed keratinocytes and animal skin to determine if co-treatment with PT and EVs from Ecklonia cava (EVE) could inhibit melanogenesis by reducing UV-induced oxidative stress and the expression of the thioredoxin-interacting protein (TXNIP)/nucleotide-binding oligomerization domain-like receptor family pyrin domain containing the 3 (NLRP3)/interleukin-18 (IL-18) pathway, which are upstream signals of the microphthalmia-associated transcription factor. UV exposure increased oxidative stress in keratinocytes and animal skin, as evaluated by 8-OHdG expression, and this effect was reduced by co-treatment with PT and EVE. UV also increased binding between NLRP3 and TXNIP, which increased NLRP3 inflammasome activation and IL-18 secretion, and this effect was reduced by co-treatment with PT and EVE in keratinocytes and animal skin. In melanocytes, conditioned media (CM) from UV-exposed keratinocytes increased the expression of melanogenesis-related pathways; however, these effects were reduced with CM from UV-exposed keratinocytes treated with PT and EVE. Similarly, PT and EVE treatment reduced melanogenesis-related signals, melanin content, and increased basement membrane (BM) components in UV-exposed animal skin. Thus, co-treatment with PT and EVE reduced melanogenesis and restored the BM structure by reducing oxidative stress and TXNIP/NLRP3/IL-18 pathway expression.

3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982581

ABSTRACT

Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation's activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.


Subject(s)
Melanins , Skin Pigmentation , Animals , Adenosine Triphosphate/metabolism , Melanins/metabolism , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Signal Transduction , Ultraviolet Rays
4.
Antioxidants (Basel) ; 12(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36978943

ABSTRACT

Oxidative stress-induced cellular senescence and mitochondrial dysfunction result in skin aging by increasing ECM levels-degrading proteins such as MMPs, and decreasing collagen synthesis. MMPs also destroy the basement membrane, which is involved in skin elasticity. The extracellular matrix vitalizer RATM (RA) contains various antioxidants and sodium hyaluronate, which lead to skin rejuvenation. We evaluated whether RA decreases oxidative stress and mitochondrial dysfunction, eventually increasing skin elasticity in aged animals. Oxidative stress was assessed by assaying NADPH oxidase activity, which is involved in ROS generation, and the expression of SOD, which removes ROS. NADPH oxidase activity was increased in aged skin and decreased by RA injection. SOD expression was decreased in aged skin and increased by RA injection. Damage to mitochondrial DNA and mitochondrial fusion markers was increased in aged skin and decreased by RA. The levels of mitochondrial biogenesis markers and fission markers were decreased in aged skin and increased by RA. The levels of NF-κB/AP-1 and MMP1/2/3/9 were increased in aged skin and decreased by RA. The levels of TGF-ß, CTGF, and collagen I/III were decreased in aged skin and increased by RA. The expression of laminin and nidogen and basement membrane density were decreased in aged skin and increased by RA. RA increased collagen fiber accumulation and elasticity in aged skin. In conclusion, RA improves skin rejuvenation by decreasing oxidative stress and mitochondrial dysfunction in aged skin.

5.
Biomolecules ; 13(2)2023 02 18.
Article in English | MEDLINE | ID: mdl-36830763

ABSTRACT

High-intensity focused ultrasound (HIFU) leads to decreased subcutaneous adipose tissue (SAT) thickness via heat-induced adipocyte necrosis. Heat can induce adipocyte apoptosis and autophagy, and it is known that nuclear or mitochondrial p53 is involved in apoptosis and autophagy. However, whether HIFU leads to apoptosis or autophagy is unclear. We evaluated whether HIFU decreases SAT thickness via p53-related apoptosis or autophagy in high-fat diet (HFD)-fed animals. The expression of nuclear and mitochondrial p53 was increased by HIFU. HIFU also led to decreased expression of BCL2/BCL-xL (an antiapoptotic signal), increased expression of BAX/BAK (an apoptotic signal), increased levels of cleaved caspase 3/9, and increased numbers of apoptotic cells as evaluated by TUNEL assay. Furthermore, HIFU led to increased levels of ATG5, BECN1, and LC3II/LC3I, and decreased levels of p62, a marker of increased autophagy. The thickness of SAT was decreased by HIFU. In conclusion, HIFU led to nuclear and mitochondrial p53 expression, which led to apoptosis and autophagy, and eventually decreased SAT thickness in HFD-fed animals.


Subject(s)
Autophagy , Tumor Suppressor Protein p53 , Animals , Apoptosis , Subcutaneous Fat , Adipocytes
6.
Molecules ; 27(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35956878

ABSTRACT

Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.


Subject(s)
NADP Transhydrogenases , Animals , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Glutathione Disulfide/metabolism , Melanins , Melanocytes/metabolism , Monophenol Monooxygenase/metabolism , NADP/metabolism , NADP Transhydrogenases/metabolism , Niacinamide/metabolism , Niacinamide/pharmacology , Polydeoxyribonucleotides/metabolism , Vitamins/metabolism
7.
Biomed Pharmacother ; 153: 113283, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35717781

ABSTRACT

Vascular calcification (VC) is induced by a decrease in sirtuin 3 (SIRT3) and superoxide dismutase (SOD)2 and increases mitochondrial reactive oxygen species (mtROS), eventually leading to mitochondrial dysfunction and phenotype alterations in vascular smooth muscle cells (VSMCs) into osteoblast-like cells in hypertension. Ecklonia cava extract (ECE) is known to increase peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) and SOD2. In this study, we evaluated the effect of ECE on decreasing VC by increasing PGC-1α which increased SOD2 activity and decreased mtROS in an in vitro VSMC model of treating serums from Wistar Kyoto (WKY), spontaneous hypertensive rats (SHRs), and ECE-treated SHRs. Furthermore, the decreasing effect of ECE on VC was evaluated with an in vivo SHR model. PGC-1α expression, SIRT3 expression, and SOD2 activity were decreased by the serum from the SHRs and increased by the serum from the ECE-treated SHRs in the VSMCs. PGC-1α silencing eliminated those increases. mtROS generation and mitochondrial DNA (mtDNA) damage increased in the SHRs but decreased with ECE. Mitochondrial fission increased in the SHRs but decreased by ECE. Mitochondrial fusion, mitophagy, and mitochondrial biogenesis were decreased in the SHRs but increased by ECE. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and calcium deposition in the medial layer of the aorta increased in the SHRs but decreased with ECE. Therefore, ECE decreases VC via the upregulation of PGC-1α and SIRT3, which increases SOD2 activity. Activated SOD2 decreases mtDNA damage and mtROS generation, which sequentially decreases NADPH oxidase activity and changes the mitochondrial dynamics, thereby decreasing VC.


Subject(s)
Hypertension , Sirtuin 3 , Vascular Calcification , Animals , DNA, Mitochondrial/genetics , Hypertension/drug therapy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control
8.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328415

ABSTRACT

It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.


Subject(s)
Lactoylglutathione Lyase , Skin Aging , Animals , Collagen/metabolism , Elasticity , Elastin/metabolism , Lactoylglutathione Lyase/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209068

ABSTRACT

It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.


Subject(s)
Ascorbic Acid/chemistry , NF-E2-Related Factor 2/metabolism , Niacinamide/administration & dosage , Polydeoxyribonucleotides/administration & dosage , Skin Physiological Phenomena/drug effects , Skin Pigmentation/drug effects , Skin/drug effects , Skin/metabolism , Biomarkers , Elasticity , Gene Expression , Immunohistochemistry , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Melanins/biosynthesis , NF-E2-Related Factor 2/genetics , Ultraviolet Rays
10.
Molecules ; 27(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056769

ABSTRACT

Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.


Subject(s)
Lymphangiogenesis/radiation effects , Radio Waves , Skin Pigmentation/radiation effects , Ultraviolet Rays , Biomarkers , Extracellular Signal-Regulated MAP Kinases/metabolism , HSP90 Heat-Shock Proteins , Hyperpigmentation/etiology , Hyperpigmentation/metabolism , Hyperpigmentation/pathology , Immunohistochemistry , Macrophages/immunology , Macrophages/metabolism , Macrophages/radiation effects , Melanins/biosynthesis , Models, Biological , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Signal Transduction/radiation effects , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism
11.
Nutrients ; 13(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34579038

ABSTRACT

An excessive fat diet induces intramuscular fat deposition that accumulates as a form of lipid droplet (LD) and leads to lipotoxicity, including muscle atrophy or decreasing muscle strength. Lipotoxicity depends on the number of LDs, subcellular distribution (intermyofibrillar, IMF, LDs or subsarcolemmal, SS), and fiber type-specific differences (type I or type II fiber) as well as the size of LD. Ecklonia cava extracts (ECE), which is known to increase peroxisome proliferator-activated receptor alpha (PPAR-α), which leads to decreasing expression level of perilipin2 (PLIN2). PLIN2 is involved in modulating the size of LDs. This study shows that ECE and dieckol could decrease PLIN2 expression and decrease the size and number of LDs in the muscle of high-fat diet (HF)-fed animals and lead to attenuating muscle atrophy. Expression level of PPAR-α was decreased, and PLIN2 was increased by HF. ECE and dieckol increased PPAR-α expression and decreased PLIN2. The diameter of LDs was increased in high-fat diet condition, and it was decreased by ECE or dieckol treatment. The number of LDs in type II fibers/total LDs was increased by HF and it was decreased by ECE or dieckol. The SS LDs were increased, and IMF LDs were decreased by HF. ECE or dieckol decreased SS LDs and increased IMF LDs. The ECE or dieckol attenuated the upregulation of muscle atrophy-related genes including Murf1, Atrogin-1, and p53 by HF. ECE or dieckol increased the cross-sectional area of the muscle fibers and grip strength, which were decreased by HF. In conclusion, ECE or dieckol decreased the size of LDs and modulated the contribution of LDs to less toxic ones by decreasing PLIN2 expression and thus attenuated muscle atrophy and strength, which were induced by HF.


Subject(s)
Benzofurans/pharmacology , Diet, High-Fat/adverse effects , Lipid Droplets/metabolism , Muscle, Skeletal/physiology , Muscular Atrophy/chemically induced , Animals , Dietary Fats , Gene Expression Regulation/drug effects , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Strength , PPAR alpha , Perilipin-1/genetics , Perilipin-1/metabolism , Phaeophyceae/chemistry
12.
Mar Drugs ; 19(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34564157

ABSTRACT

Increased inflammation is the main pathophysiology of nonalcoholic fatty liver disease (NAFLD). Inflammation affects lymphatic vessel function that contributes to the removal of immune cells or macromolecules. Dysfunctional lymphatic vessels with decreased permeability are present in NAFLD. High-fat diet (HFD) is known to increase body weight, food intake, and inflammation in the liver. Previously, it was reported that Ecklonia cava extracts (ECE) decreased food intake or weight gain, and low-calorie diet and weight loss is known as a treatment for NAFLD. In this study, the effects of ECE and dieckol (DK)-which is one component of ECE that decreases inflammation and increases lymphangiogenesis and lymphatic drainage by controlling lymphatic permeability in high-fat diet (HFD)-fed mice-on weight gain and food intake were investigated. ECE and DK decreased weight gain and food intake in the HFD-fed mice. NAFLD activities such as steatosis, lobular inflammation, and ballooning were increased by HFD and attenuated by ECE and DK. The expression of inflammatory cytokines such as IL-6 and TNF-α and infiltration of M1 macrophages were increased by HFD, and they were decreased by ECE or DK. The signaling pathways of lymphangiogenesis, VEGFR-3, PI3K/pAKT, and pERK were decreased by HFD, and they were restored by either ECE or DK. The expression of VE-cadherin (which represents lymphatic junctional function) was increased by HFD, although it was restored by either ECE or DK. In conclusion, ECE and DK attenuated NAFLD by decreasing weight gain and food intake, decreasing inflammation, and increasing lymphangiogenesis, as well as modulating lymphatic vessel permeability.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Benzofurans/therapeutic use , Non-alcoholic Fatty Liver Disease/prevention & control , Phaeophyceae , Plant Extracts/therapeutic use , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Aquatic Organisms , Benzofurans/administration & dosage , Benzofurans/pharmacology , Diet, High-Fat , Disease Models, Animal , Energy Intake/drug effects , Liver/drug effects , Lymphatic Vessels/drug effects , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Plant Extracts/pharmacology
13.
Mar Drugs ; 19(6)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070893

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD), which promotes serious health problems, is related to the increase in the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis by a high-fat diet (HFD). Whether dieckol (DK), a component of Ecklonia cava extracts (ECE), attenuated NAFLD in an HFD-induced NAFLD animal model was evaluated. The expression of high mobility group box 1/Toll-like receptor 4/nuclear factor-κB, which initiated the NLRP3 inflammasome, was increased in the liver of HFD-fed animals and significantly decreased with ECE or DK administration. The expression of NLRP3/ASC/caspase-1, which are components of the NLRP3 inflammasome, and the number of pyroptotic cells were increased by HFD and decreased with ECE or DK administration. The accumulation of triglycerides and free fatty acids in the liver was increased by HFD and decreased with ECE or DK administration. The histological NAFLD score was increased by HFD and decreased with ECE or DK administration. The expression of lipogenic genes (FASN, SREBP-2, PPARγ, and FABP4) increased and that of lipolytic genes (PPARα, CPT1A, ATGL, and HSL) was decreased by HFD and attenuated with ECE or DK administration. In conclusion, ECE or DK attenuated NAFLD by decreasing the NLRP3 inflammasome and pyroptosis.


Subject(s)
Benzofurans/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Benzofurans/pharmacology , Carnitine O-Palmitoyltransferase/genetics , Diet, High-Fat , Gene Expression/drug effects , HMGB1 Protein/immunology , Inflammasomes/immunology , Lipase/genetics , Lipolysis/drug effects , Lipolysis/genetics , Liver/drug effects , Liver/immunology , Male , Mice, Inbred C57BL , NF-kappa B/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , PPAR alpha/genetics , Pyroptosis/drug effects , Toll-Like Receptor 4/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...