Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
JAMA Netw Open ; 7(5): e249539, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700863

ABSTRACT

Importance: Many epidemiologic studies have suggested that low levels of plasma leptin, a major adipokine, are associated with increased risk of Alzheimer disease (AD) dementia and cognitive decline. Nevertheless, the mechanistic pathway linking plasma leptin and AD-related cognitive decline is not yet fully understood. Objective: To examine the association of plasma leptin levels with in vivo AD pathologies, including amyloid-beta (Aß) and tau deposition, through both cross-sectional and longitudinal approaches among cognitively unimpaired older adults. Design, Setting, and Participants: This was a longitudinal cohort study from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer Disease. Data were collected from January 1, 2014, to December 31, 2020, and data were analyzed from July 11 to September 6, 2022. The study included a total of 208 cognitively unimpaired participants who underwent baseline positron emission tomography (PET) scans for brain Aß deposition. For longitudinal analyses, 192 participants who completed both baseline and 2-year follow-up PET scans for brain Aß deposition were included. Exposure: Plasma leptin levels as assessed by enzyme-linked immunosorbent assay. Main Outcomes and Measures: Baseline levels and longitudinal changes of global Aß and AD-signature region tau deposition measured by PET scans. Results: Among the 208 participants, the mean (SD) age was 66.0 (11.3) years, 114 were women (54.8%), and 37 were apolipoprotein E ε4 carriers (17.8%). Lower plasma leptin levels had a significant cross-sectional association with greater brain Aß deposition (ß = -0.04; 95% CI, -0.09 to 0.00; P = .046), while there was no significant association between plasma leptin levels and tau deposition (ß = -0.02; 95% CI, -0.05 to 0.02; P = .41). In contrast, longitudinal analyses revealed that there was a significant association between lower baseline leptin levels and greater increase of tau deposition over 2 years (ß = -0.06; 95% CI, -0.11 to -0.01; P = .03), whereas plasma leptin levels did not have a significant association with longitudinal change of Aß deposition (ß = 0.006; 95% CI, 0.00-0.02; P = .27). Conclusions and Relevance: The present findings suggest that plasma leptin may be protective for the development or progression of AD pathology, including both Aß and tau deposition.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Leptin , tau Proteins , Humans , Leptin/blood , Female , Male , Aged , Alzheimer Disease/blood , Longitudinal Studies , Cross-Sectional Studies , Amyloid beta-Peptides/blood , tau Proteins/blood , Positron-Emission Tomography , Brain/diagnostic imaging , Brain/metabolism , Republic of Korea/epidemiology , Aged, 80 and over , Cognitive Dysfunction/blood , Biomarkers/blood , Middle Aged
2.
Alzheimers Res Ther ; 16(1): 50, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454444

ABSTRACT

BACKGROUND: Growing evidence suggests that not only cerebrovascular disease but also Alzheimer's disease (AD) pathological process itself cause cerebral white matter degeneration, resulting in white matter hyperintensities (WMHs). Some preclinical evidence also indicates that white matter degeneration may precede or affect the development of AD pathology. This study aimed to clarify the direction of influence between in vivo AD pathologies, particularly beta-amyloid (Aß) and tau deposition, and WMHs through longitudinal approach. METHODS: Total 282 older adults including cognitively normal and cognitively impaired individuals were recruited from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease (KBASE) cohort. The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B PET for measuring Aß deposition, [18F] AV-1451 PET for measuring tau deposition, and MRI scans with fluid-attenuated inversion recovery image for measuring WMH volume. The relationships between Aß or tau deposition and WMH volume were examined using multiple linear regression analysis. In this analysis, baseline Aß or tau were used as independent variables, and change of WMH volume over 2 years was used as dependent variable to examine the effect of AD pathology on increase of WMH volume. Additionally, we set baseline WMH volume as independent variable and longitudinal change of Aß or tau deposition for 2 years as dependent variables to investigate whether WMH volume could precede AD pathologies. RESULTS: Baseline Aß deposition, but not tau deposition, had significant positive association with longitudinal change of WMH volume over 2 years. Baseline WMH volume was not related with any of longitudinal change of Aß or tau deposition for 2 years. We also found a significant interaction effect between baseline Aß deposition and sex on longitudinal change of WMH volume. Subsequent subgroup analyses showed that high baseline Aß deposition was associated with increase of WMH volume over 2 years in female, but not in male. CONCLUSIONS: Our findings suggest that Aß deposition accelerates cerebral WMHs, particularly in female, whereas white matter degeneration appears not influence on longitudinal Aß increase. The results also did not support any direction of influence between tau deposition and WMHs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Male , Female , Aged , Alzheimer Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Magnetic Resonance Imaging , Cognitive Dysfunction/pathology
3.
Alzheimers Res Ther ; 15(1): 218, 2023 12 16.
Article in English | MEDLINE | ID: mdl-38102714

ABSTRACT

BACKGROUND: White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS: We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥ 55 years, including 276 cognitively normal older adults (CN), 142 with mild cognitive impairment (MCI), and 87 AD patients, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS: Compared to CN, AD and MCI subjects showed significantly higher RD, MD, and AxD values (all p-values < 0.001) and significantly lower FA values (left p ≤ 0.002, right p ≤ 0.015) after Bonferroni adjustment for multiple comparisons. Most tests of cognition and mood (p < 0.001) as well as higher medial temporal amyloid burden (p < 0.001) were associated with poorer WM integrity in the CBH after Bonferroni adjustment. CONCLUSION: These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , White Matter/diagnostic imaging , Diffusion Tensor Imaging , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Amyloidogenic Proteins , Republic of Korea/epidemiology
4.
J Alzheimers Dis ; 96(2): 633-641, 2023.
Article in English | MEDLINE | ID: mdl-37807780

ABSTRACT

BACKGROUND: As tracking subtle cognitive declines in the preclinical stage of Alzheimer's disease (AD) is difficult with traditional individual outcome measures, need for cognitive composite for preclinical AD is widely recognized. OBJECTIVE: We aimed to develop culturally appropriate cognitive composite that sensitively identifies subtle cognitive decline of preclinical AD in Korean older adults. METHODS: A total 225 cognitively normal elderly individuals from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease, were included. Tests of episodic memory, orientation, and executive function were carefully selected through review of previously established composites. Three candidate composites including Consortium to Establish a Registry for Alzheimer's Disease Word list recall (WLR), Logical memory (LM) II, and Mini-Mental status examination (MMSE) in common, and Letter fluency test (LF), category fluency test, or Stroop color and word test, were selected. RESULTS: Student t-tests demonstrated that only the composite composed of WLR, LM II, MMSE, and LF (Composite 1) showed a significant difference in score decline over two-year follow-up period between Aß positive and negative group (p = 0.03). Linear mixed model analyses also showed that the Aß x time interaction effect was significant only for Composite 1 (p = 0.025). Based on the results, Composite 1 was chosen as the final cognitive composite for preclinical Alzheimer's disease (CPAD). CONCLUSIONS: CPAD can be used to assess subtle cognitive decline of preclinical AD in clinical research settings, especially in Korean older adults. It also may be used for monitoring progression or treatment benefits in clinical practices.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/psychology , Disease Progression , Cognitive Dysfunction/psychology , Cognition , Republic of Korea , Neuropsychological Tests , Amyloid beta-Peptides
5.
Alzheimers Res Ther ; 15(1): 108, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312229

ABSTRACT

BACKGROUND: Low body mass index (BMI) or underweight status in late life is associated with an increased risk of dementia or Alzheimer's disease (AD). However, the relationship between late-life BMI and prospective longitudinal changes of in-vivo AD pathology has not been investigated. METHODS: This prospective longitudinal study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease (KBASE). A total of 194 cognitive normal older adults were included in the analysis. BMI at baseline was measured, and two-year changes in brain Aß and tau deposition on PET imaging were used as the main outcomes. Linear mixed-effects (LME) models were used to examine the relationships between late-life BMI and longitudinal change in AD neuropathological biomarkers. RESULTS: A lower BMI at baseline was significantly associated with a greater increase in tau deposition in AD-signature region over 2 years (ß, -0.018; 95% CI, -0.028 to -0.004; p = .008), In contrast, BMI was not related to two-year changes in global Aß deposition (ß, 0.0002; 95% CI, -0.003 to 0.002, p = .671). An additional exploratory analysis for each sex showed lower baseline BMI was associated with greater increases in tau deposition in males (ß, -0.027; 95% CI, -0.046 to -0.009; p = 0.007), but not in females. DISCUSSION: The findings suggest that lower BMI in late-life may predict or contribute to the progression of tau pathology over the subsequent years in cognitively unimpaired older adults.


Subject(s)
Alzheimer Disease , Female , Male , Humans , Aged , Body Mass Index , Alzheimer Disease/diagnostic imaging , Longitudinal Studies , Prospective Studies , Aging
6.
Aging Dis ; 14(3): 904-918, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37191420

ABSTRACT

High blood adiponectin has been associated with Alzheimer's disease (AD) dementia and related cognitive decline. We aimed to investigate the association between serum adiponectin level and in vivo AD pathologies. Cross-sectional and longitudinal study designs for the data of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease, an ongoing prospective cohort study that began in 2014. A total of 283 cognitively normal older adults between 55 and 90 years of age were included in community and memory clinic setting. Participants underwent comprehensive clinical assessments, measurement of serum adiponectin level, and multimodal brain imaging, including Pittsburgh compound-B positron emission tomography (PET), AV-1451 PET, fluorodeoxyglucose (FDG)-PET, and MRI at baseline and 2-year follow-up. Serum adiponectin level was positively associated with global beta-amyloid protein (Aß) retention and change therein over 2 years, but not with other AD neuroimaging markers including tau deposition, AD-related neurodegeneration, and white matter hyperintensities. Blood adiponectin level is associated with increased brain amyloid deposition, which suggests that adiponectin may be a potential target for therapeutic and preventive strategies against AD.

7.
medRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066317

ABSTRACT

BACKGROUND: White matter (WM) microstructural changes in the hippocampal cingulum bundle (CBH) in Alzheimer's disease (AD) have been described in cohorts of largely European ancestry but are lacking in other populations. METHODS: We assessed the relationship between CBH WM integrity and cognition or amyloid burden in 505 Korean older adults aged ≥55 years, including 276 cognitively normal older adults (CN), 142 mild cognitive impairment (MCI), and 87 AD, recruited as part of the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's disease (KBASE) at Seoul National University. RESULTS: Compared to CN, AD and MCI subjects showed decreased WM integrity in the bilateral CBH. Cognition, mood, and higher amyloid burden were also associated with poorer WM integrity in the CBH. CONCLUSION: These findings are consistent with patterns of WM microstructural damage previously reported in non-Hispanic White (NHW) MCI/AD cohorts, reinforcing existing evidence from predominantly NHW cohort studies.

8.
Exp Mol Med ; 55(5): 1023-1032, 2023 05.
Article in English | MEDLINE | ID: mdl-37121979

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaques and impaired brain metabolism. Because women have a higher prevalence of AD than men, sex differences are of great interest. Using cross-sectional and longitudinal data, we showed sex-dependent metabolic dysregulations in the brains of AD patients. Cohort 1 (South Korean, n = 181) underwent Pittsburgh compound B-PET, fluorodeoxyglucose-PET, magnetic resonance imaging, and blood biomarker (plasma tau and beta-amyloid 42 and 40) measurements at baseline and two-year follow-ups. Transcriptome analysis of data from Cohorts 2 and 3 (European, n = 78; Singaporean, n = 18) revealed sex differences in AD-related alterations in brain metabolism. In women (but not in men), all imaging indicators displayed consistent correlation curves with AD progression. At the two-year follow-up, clear brain metabolic impairment was revealed only in women, and the plasma beta-amyloid 42/40 ratio was a possible biomarker for brain metabolism in women. Furthermore, our transcriptome analysis revealed sex differences in transcriptomes and metabolism in the brains of AD patients as well as a molecular network of 25 female-specific glucose metabolic genes (FGGs). We discovered four key-attractor FGG genes (ALDOA, ENO2, PRKACB, and PPP2R5D) that were associated with amyloid/tau-related genes (APP, MAPT, BACE1, and BACE2). Furthermore, these genes successfully distinguished amyloid positivity in women. Understanding sex differences in the pathogenesis of AD and considering these differences will improve development of effective diagnostics and therapeutic treatments for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Female , Male , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Neurodegenerative Diseases/metabolism , Sex Characteristics , Cross-Sectional Studies , Aspartic Acid Endopeptidases/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Biomarkers/metabolism , Amyloid/metabolism , Glucose/metabolism , Disease Progression , Protein Phosphatase 2/metabolism
9.
J Alzheimers Dis ; 93(1): 87-95, 2023.
Article in English | MEDLINE | ID: mdl-36938732

ABSTRACT

BACKGROUND: Ankle-brachial index (ABI), an indicator of atherosclerosis or arterial stiffness, has been associated with Alzheimer's disease (AD) dementia and related cognitive impairment. Nevertheless, only limited information is available regarding its contribution to brain alterations leading to cognitive decline in late-life. OBJECTIVE: We aimed to investigate the relationship of ABI with in vivo AD pathologies and cerebrovascular injury in cognitively impaired older adults. METHODS: Total 127 cognitively impaired (70 mild cognitive impairment and 57 AD dementia) individuals, who participated in an ongoing prospective cohort study, were included. All participants underwent comprehensive clinical and neuropsychological assessment, ABI measurement, apolipoprotein E (APOE) ɛ4 genotyping, and multi-modal brain imaging including [11C] Pittsburgh Compound B (PiB)-positron emission tomography (PET) and [18F] fludeoxyglucose (FDG)-PET, and MRI. RESULTS: General linear model analysis showed significant relationship between ABI strata (low ABI: <1.00, normal ABI: 1.00-1.29, and high ABI: ≥1.30) and AD-signature region cerebral glucose metabolism (AD-CM), even after controlling age, sex, clinical dementia rating-sum of box, and APOE ɛ4 positivity (p = 0.029). Post hoc comparison revealed that low ABI had significantly lower AD-CM than middle and high ABI, while no difference of AD-CM was found between middle and high ABI. There was no significant difference of global Aß deposition, AD-signature region cortical thickness, and white matter hyperintensity volume between the three ABI strata. CONCLUSION: Our findings suggest that lower ABI, likely related to atherosclerosis, may contribute to the aggravation of AD-related regional neurodegeneration in cognitively impaired older adults.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Ankle Brachial Index , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Apolipoproteins E/metabolism , Glucose/metabolism , Positron-Emission Tomography/methods , Magnetic Resonance Imaging
10.
Otolaryngol Head Neck Surg ; 169(1): 112-119, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36939433

ABSTRACT

OBJECTIVE: To investigate whether central auditory processing dysfunction measured by the dichotic digit test-1 digit (DDT1) is present in preclinical Alzheimer's disease (AD) individuals who are cognitively normal (CN) older adults with the cerebral beta-amyloid (Aß) deposition and to explore the potential of the DDT1 as a screening test for preclinical AD. STUDY DESIGN: Cross-sectional design. SETTING: A prospective observational cohort study. METHODS: CN older adults with a global clinical dementia rating score of 0 were included. The hearing test battery including pure-tone audiometry, speech audiometry, distortion product otoacoustic emission, and DDT1 was administered to participants. RESULTS: Fifty CN older adults were included. Among them, 38 individuals were included in the Aß deposition negative (AN) group and 12 were included in the Aß deposition positive (AP) group. The DDT1 scores of both the better and worse ears were significantly lower in the AP group than in the AN group (p = .008 and p = .015, respectively). No significant differences were observed between the groups in tests of the peripheral auditory pathways. In multivariable logistic regression analysis adjusted for apolipoprotein E4 positivity, the DDT1 better ear score predicted the AP group (p = .036, odds ratio = 0.892, 95% confidence interval: 0.780-0.985) with relatively high diagnostic accuracy. CONCLUSION: Our findings suggest that Aß deposition may affect the central auditory pathway even before cognitive decline appears. DDT1, which can easily be applied to the old-age population, may have the potential as a screening tool for preclinical AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Prospective Studies , Cross-Sectional Studies , Cognitive Dysfunction/complications , Auditory Perception , Positron-Emission Tomography
11.
Psychiatry Clin Neurosci ; 77(4): 205-212, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36527292

ABSTRACT

AIM: The neurobiological substrates underlying the relationship of circadian rest-activity rhythm (RAR) alteration with accelerated late-life cognitive decline are not clearly understood. In the present study, the longitudinal relationship of objectively measured circadian RAR with in vivo Alzheimer disease (AD) pathologies and cerebrovascular injury was investigated in older adults without dementia. METHODS: The present study included 129 participants without dementia who participated in the KBASE (Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease) cohort. All participants underwent actigraphy at baseline and two consecutive [11 C] Pittsburgh compound-B positron emission tomography (PET), [18 F] fluorodeoxyglucose-PET, magnetic resonance imaging, and Mini-Mental State Examination (MMSE) at baseline and at a 2-year follow-up assessment. The associations of circadian RAR with annualized change in neuroimaging measures including global amyloid-beta retention, AD-signature region cerebral glucose metabolism (AD-CM), and white matter hyperintensity volume were examined. RESULTS: Delayed acrophase at baseline was significantly associated with greater annualized decline of AD-CM over a 2-year period, but not with that of other neuroimaging measures. In contrast, other circadian RAR parameters at baseline had no association with annualized change of any neuroimaging measures. Annualized decline of AD-CM was also significantly positively associated with the annual change in MMSE scores. Furthermore, a mediation analysis showed that greater reduction in AD-CM mediated the effect of delayed acrophase at baseline on faster decline of MMSE score. CONCLUSION: The findings indicate that delayed acrophase in late life may cause or predict hypometabolism at AD-signature brain regions, which underlies cognitive decline in the near future.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Brain/pathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroimaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Positron-Emission Tomography , Magnetic Resonance Imaging , Longitudinal Studies
12.
CNS Neurosci Ther ; 29(2): 577-586, 2023 02.
Article in English | MEDLINE | ID: mdl-36468423

ABSTRACT

AIMS: The aim of this study was to investigate the associations of enlarged perivascular spaces (EPVS) in the basal ganglia (BG) and centrum semiovale (CSO) with beta-amyloid (Aß) and tau deposition in older adults with a diverse cognitive spectrum. METHODS: A total of 163 (68 cognitively normal and 95 cognitively impaired) older participants underwent [11 C] Pittsburgh compound B and [18 F] AV-1451 PET, and MRI. EPVS in the BG and CSO and other small vessel disease markers, such as white matter hyperintensities, lacunes, and deep and lobar microbleeds, were assessed. RESULTS: Increased EPVS in the BG showed a significant association with lower cerebral tau deposition, even after controlling for other small vessel disease markers. Further exploratory analyses showed that this association was significant in cognitively impaired, Aß-positive, or APOE4-positive individuals, but not significant in the cognitively normal, Aß-negative, or APOE4-negative participants. In contrast to EPVS in the BG, EPVS in the CSO did not have any relationship with cerebral tau deposition. In addition, none of the two types of EPVS were associated with cerebral Aß deposition. CONCLUSION: Brain tau deposition appears to be reduced with increased EPVS in the BG, especially in individuals with cognitive impairment, pathological amyloid burden, or genetic Alzheimer's disease risk.


Subject(s)
Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Aged , Apolipoprotein E4 , Magnetic Resonance Imaging , Cognitive Dysfunction/pathology , Amyloid beta-Peptides , Basal Ganglia/diagnostic imaging , Basal Ganglia/pathology , Cerebral Small Vessel Diseases/pathology
13.
Alzheimers Res Ther ; 14(1): 193, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566225

ABSTRACT

BACKGROUND: Hypertension has been associated with Alzheimer's disease (AD) dementia as well as vascular dementia. However, the underlying neuropathological changes that link hypertension to AD remain poorly understood. In our study, we examined the relationships of a history of hypertension and high current blood pressure (BP) with in vivo AD pathologies including ß-amyloid (Aß) and tau and also investigated whether a history of hypertension and current BP respectively affect the association between Aß and tau deposition. METHODS: This cross-sectional study was conducted as part of the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease, a prospective cohort study. Cognitively normal older adults who underwent both Aß and tau positron emission tomography (PET) (i.e., [11C]-Pittsburgh compound B and [18F] AV-1451 PET) were selected. History of hypertension and current BP were evaluated and cerebral Aß and tau deposition measured by PET were used as main outcomes. Generalized linear regression models were used to estimate associations. RESULTS: A total of 68 cognitively normal older adults (mean [SD] age, 71.5 [7.4] years; 40 women [59%]) were included in the study. Neither a history of hypertension nor the current BP exhibited a direct association with Aß or tau deposition. However, the synergistic interaction effects of high current systolic (ß, 0.359; SE, 0.141; p = 0.014) and diastolic (ß, 0.696; SE, 0.158; p < 0.001) BP state with Aß deposition on tau deposition were significant, whereas there was no such effect for a history of hypertension (ß, 0.186; SE, 0.152; p = 0.224). CONCLUSIONS: The findings suggest that high current BP, but not a history of hypertension, synergistically modulate the relationship between cerebral Aß and tau deposition in late-life. In terms of AD prevention, the results support the importance of strict BP control in cognitively normal older adults with hypertension.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Hypertension , tau Proteins , Aged , Female , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Cross-Sectional Studies , Hypertension/complications , Hypertension/metabolism , Positron-Emission Tomography , Prospective Studies , tau Proteins/metabolism
14.
iScience ; 25(11): 105422, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388975

ABSTRACT

Little is known about the association between meal frequency and Alzheimer's disease (AD) in humans. We tested the hypothesis that low meal frequency (LMF) is associated with reduced in vivo AD pathology in human brain, and additionally investigated the mediation of serum ghrelin, a hunger-related hormone, for the association. A total of 411 non-demented older adults were systematically interviewed to identify their dietary patterns including meal frequency and underwent multi-modal neuroimaging for cerebral beta-amyloid (Aß) and tau deposition, glucose metabolism, and cerebrovascular injury. LMF (less than three meals a day) was significantly associated with lower Aß deposition compared to high meal frequency (HMF). In addition, both LMF and reduced Aß deposition were significantly related to elevated serum ghrelin. Our findings suggest that LMF may be related to the lower risk of AD through reduced brain amyloid deposition. Additionally, ghrelin appears mediate the association between LMF and lower amyloid deposition.

15.
PLoS One ; 17(11): e0278276, 2022.
Article in English | MEDLINE | ID: mdl-36445883

ABSTRACT

BACKGROUND: Although some human studies have reported gut microbiome changes in individuals with Alzheimer's disease (AD) dementia or mild cognitive impairment (MCI), gut microbiome alterations in preclinical AD, i.e., cerebral amyloidosis without cognitive impairment, is largely unknown. OBJECTIVE: We aimed to identify gut microbial alterations associated with preclinical AD by comparing cognitively normal (CN) older adults with cerebral Aß deposition (Aß+ CN) and those without cerebral Aß deposition (Aß- CN). METHODS: Seventy-eight CN older participants (18 Aß+ CN and 60 Aß- CN) were included, and all participants underwent clinical assessment and Pittsburg compound B-positron emission tomography. The V3-V4 region of the 16S rRNA gene of genomic DNA extracted from feces was amplified and sequenced to establish the microbial community. RESULTS: Generalized linear model analysis revealed that the genera Megamonas (B = 3.399, q<0.001), Serratia (B = 3.044, q = 0.005), Leptotrichia (B = 5.862, q = 0.024) and Clostridium (family Clostridiaceae) (B = 0.788, q = 0.034) were more abundant in the Aß+ CN group than the Aß- CN group. In contrast, genera CF231 (B = -3.237, q< 0.001), Victivallis (B = -3.447, q = 0.004) Enterococcus (B = -2.044, q = 0.042), Mitsuokella (B = -2.119, q = 0.042) and Clostridium (family Erysipelotrichaceae) (B = -2.222, q = 0.043) were decreased in Aß+ CN compared to Aß- CN. Notably, the classification model including the differently abundant genera could effectively distinguish Aß+ CN from Aß- CN (AUC = 0.823). CONCLUSION: Our findings suggest that specific alterations of gut bacterial taxa are related to preclinical AD, which means these changes may precede cognitive decline. Therefore, examining changes in the microbiome may be helpful in preclinical AD screening.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Humans , Animals , Aged , Gastrointestinal Microbiome/genetics , Alzheimer Disease/genetics , RNA, Ribosomal, 16S/genetics , Tomography, X-Ray Computed
16.
Cell Rep ; 40(12): 111391, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130492

ABSTRACT

Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , B-Lymphocytes/metabolism , Humans , Longitudinal Studies , Receptors, Antigen, B-Cell
17.
Adv Sci (Weinh) ; 9(23): e2201212, 2022 08.
Article in English | MEDLINE | ID: mdl-35694866

ABSTRACT

Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aß+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aß- and 90 Aß+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aß-, 5 Aß+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Amyloidosis/metabolism , Autophagy/genetics , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Microglia/metabolism , Microglia/pathology
18.
Neurology ; 99(13): e1414-e1421, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35764403

ABSTRACT

BACKGROUND AND OBJECTIVES: Although enlarged perivascular spaces (EPVS) have been suggested as an emerging measure of small vessel disease (SVD) in the brain, their association with cognitive impairment is not yet clearly understood. We aimed to examine the relationship between each EPVS in the basal ganglia (BG-EPVS) and centrum semiovale (CSO-EPVS) with cognition in a memory clinic population. METHODS: Participants with a diverse cognitive spectrum were recruited from a university hospital memory clinic. They underwent comprehensive clinical and neuropsychological assessments and brain MRI. BG-EPVS and CSO-EPVS were measured on T2-weighted MRI and then dichotomized into low and high degrees for further analyses. Other SVD markers were assessed using validated rating scales. RESULTS: A total of 910 participants were included in this study. A high degree of BG-EPVS was significantly associated with poorer scores on the executive function domain, but not with other cognitive domains, when age, sex, education, MRI scanner type, and cognitive diagnosis were controlled as covariates. However, the association between BG-EPVS and executive function was no longer significant after controlling for other markers of SVD, such as lacunar infarcts and periventricular white matter hyperintensities, as additional covariates. CSO-EPVS did not have a significant relationship with any cognitive scores, regardless of the covariates. DISCUSSION: Our findings from a large memory clinic population suggest that EPVS, regardless of the topographical location, may not be used as a specific SVD marker for cognitive impairment, although an apparent association was observed between a high degree of BG-EPVS and executive dysfunction before controlling other SVD markers that share a common pathophysiologic process with BG-EPVS.


Subject(s)
Cerebral Small Vessel Diseases , Nervous System Malformations , Stroke, Lacunar , Basal Ganglia/diagnostic imaging , Brain/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition , Humans , Magnetic Resonance Imaging , Stroke, Lacunar/complications
19.
Psychiatry Clin Neurosci ; 76(10): 490-504, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35751876

ABSTRACT

AIM: Spouse bereavement is one of life's greatest stresses and has been suggested to trigger or accelerate cognitive decline and dementia. However, little information is available about the potential brain pathologies underlying the association between spouse bereavement and cognitive decline. We aimed to investigate that lifetime spouse bereavement is associated with in vivo human brain pathologies underlying cognitive decline. METHODS: A total of 319 ever-married older adults between the ages of 61 and 90 years underwent comprehensive clinical assessments and multimodal brain imaging including [11 C] Pittsburgh compound B-positron emission tomography (PET), AV-1451 PET, [18 F] fluorodeoxyglucose-PET, and magnetic resonance imaging. Participants were classified as experiencing no spouse bereavement or spouse bereavement, and comparisons using propensity score matching (59 cases and 59 controls) were performed. RESULTS: Spouse bereavement was significantly associated with higher cerebral white matter hyperintensity (WMH) volume compared with no spouse bereavement. Interaction and subsequent subgroup analyses showed that spouse bereavement was significantly associated with higher WMH in the older (>75 years) subgroup and among those with no- or low-skill occupations. In addition, spouse bereavement at 60 years or older affects WMH volume compared with no spouse bereavement, whereas spouse bereavement at younger than 60 years did not. No group differences were observed in other brain pathologies between spouse bereavement categories. CONCLUSIONS: The findings suggest that the spouse bereavement may contribute to dementia or cognitive decline by increasing cerebrovascular injury, particularly in older individuals and those with no- or low-skill occupations.


Subject(s)
Bereavement , Cognitive Dysfunction , Dementia , White Matter , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/complications , Humans , Magnetic Resonance Imaging , Middle Aged , Propensity Score , White Matter/pathology
20.
J Alzheimers Dis ; 86(1): 441-450, 2022.
Article in English | MEDLINE | ID: mdl-35068452

ABSTRACT

BACKGROUND: Physical activities (PA) have been suggested to reduce the risk of Alzheimer's disease (AD) dementia. However, information on the neuropathological links underlying the relationship is limited. OBJECTIVE: We investigated the role of midlife and late-life PA with in vivo AD neuropathologies in old adults without dementia. METHODS: This study included participants from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's disease (KBASE). The participants underwent comprehensive clinical and neuropsychological assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging. Using the multi-modal brain imaging data, in vivo AD pathologies including global amyloid deposition, AD-signature region cerebral glucose metabolism (AD-CM), and AD-signature region cortical thickness (AD-CT) were quantified. Both midlife and late-life PA of participants were measured using the Lifetime Total Physical Activity Questionnaire. RESULTS: This study was performed on 260 participants without dementia (195 with normal cognitive function and 65 with mild cognitive impairment). PA of neither midlife nor late-life showed direct correspondence with any neuroimaging biomarker. However, late-life PA moderated the relationship of brain amyloid-ß (Aß) deposition with AD-CM and AD-CT. Aß positivity had a significant negative effect on both AD-CM and AD-CT in individuals with lower late-life PA, but those with higher late-life PA did not show such results. Midlife PA did not have such a moderation effect. CONCLUSION: The findings suggest that physically active lifestyle in late-life, rather than that in midlife, may delay AD-associated cognitive decline by decreasing Aß-induced neurodegenerative changes in old adults.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Exercise , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...